Mark Scheme (Results)

January 2015

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 2C

Pearson Edexcel Certificate in
Chemistry (4CH0) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code UG040458
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Accept	Reject	Marks
1 (a)	D (a molecule)			
(b)	A (covalent)			1
(c)	NH_{3}	$\mathrm{H}_{3} \mathrm{~N}$		1

Total 3 marks

Question number	Answer	Accept	Reject	Marks
2 (a) (i)	(solubility/it) increases as temperature increases	positive correlation	references to proportionality	1
(b) (solid) B	M1 - solid/crystals would form M2 - (solid A) becomes less soluble (as the solution cools) / solubility (of solid A) decreases (as temperature decreases)	reverse argument		1

Question number	Expected Answer		Accept	Reject	Marks
3 (a)	M1 P - iron ore / haematite ignore iron(III) oxide/ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ M2 Q - calcium silicate		slag / CaSiO ${ }_{3}$		2
(b)	Type of reaction	Letter			3
	one that gives out heat	A			
	one that is a thermal decomposition	D ;			
	one that is a neutralisation	E			
	one that forms a poisonous gas	B;			
(c)	M1- oxygen IGNORE O M2 - water		air O_{2} moisture $/ \mathrm{H}_{2} \mathrm{O}$		2

(d)	M1 zinc corrodes/reacts instead of iron / faster than iron M2 iron corrodes/reacts instead of tin / faster than tin lack of comparison with other metal max 1 from M1 and M2 ignore references to tin rusting M3 correct reference to order of reactivity of all three metals	zinc loses electrons/is oxidised instead of iron iron loses electrons/is oxidised instead of tin accept reverse arguments	zinc rusts (instead of iron)	3

Question number	Answer	Accept	Reject	Marks
$4(a)(i)$ (ii)	fermentation (to provide the) catalyst/enzyme/zymase	to increase the rate of the reaction		1 1
(b)(i) (ii)	M1 (test) - flame test M2 (observation) - brick red / orange-red copper(II) ions: M1 (test) - (aqueous) sodium hydroxide / NaOH M2 (observation) - blue precipitate ignore shades of blue M2 dep on M1 or near miss of formula, eg $\mathrm{Na}(\mathrm{OH})_{2}$ sulfate ions: M1 (test) - (dilute) hydrochloric acid / HCl M2 (test) - (aqueous) barium chloride / BaCl_{2} M3 (observation) - white precipitate M3 dep on M2 or near miss	suitable description of flame test red accept other suitable alkalis suitable alternatives to precipitate (dilute) nitric acid / HNO_{3} (aqueous) barium nitrate / $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	all other colours Reject sulfuric acid for M1 only	2 5

Question number	Answer	Accept	Reject	$\begin{gathered} \text { Mark } \\ s \end{gathered}$
4 (c)	$\begin{aligned} & \text { M1 } \text { (pressure) - 60-70 atm } \\ & \mathbf{M 2} \text { (catalyst) - phosphoric acid / } \\ & \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \text { ignore references to concentration } \end{aligned}$	any pressure or range within this range phosphoric(V) acid	any other oxidation state	2
(d)	M1 (Σ bonds broken) $348+412+$ 360 (= 1120) M2 (Σ bonds made) $612+463$ (= 1075) M3 M1 - M2 / $\boldsymbol{\Sigma}$ bonds broken $-\Sigma$ bonds made M4 (+)45 (kJ/mol) Correct answer with no working scores 4 - 45 (kJ/mol) scores 3	$\begin{aligned} & 3231 \\ & 3186 \end{aligned}$		4

Question number	Answer	Accept	Reject	Marks
5 (a)	M1 temperature after 27.1 M2 temperature before 18.8 M3 temperature change $(+) 8.3$ Recorded temperatures correct but in wrong order scores 1 for M1 and M2 M3 csq on M1 and M2	one trailing zero	more than one trailing zero	3
(b)	M1 heat (energy) /thermal energy lost (to the atmosphere) ignore just energy lost M2 potassium hydroxide dissolves (very/too) slowly	water evaporates potassium hydroxide does not completely dissolve potassium hydroxide is impure less than 3 g of potassium hydroxide is used more than $50 \mathrm{~cm}^{3}$ of water is used		2

Question number	Answer	Accept	Reject	Marks
6 (a)	Element Arrangement of electrons in atom Arrangement of electrons in ion Charge on ion 2.8 .8 $(1)+/+1$ 2.8 .8 $2-/-2$ M1 - both arrangements correct M2 - charge on potassium ion M3 - charge on sulfide ion	$\begin{aligned} & \mathrm{K}^{(1)+} / \mathrm{K}^{+1} \\ & \mathrm{~S}^{2-} / \mathrm{S}^{-2} \end{aligned}$ positive for potassium and negative for sulfide for 1 mark		3
(b) (i) (ii)	ions move/travel (to the electrodes) M1 (electrostatic) forces (of attraction) between (oppositely charged) ions M2 are (relatively) strong M3 large amount of energy required to overcome the forces / separate the ions from the lattice M2 dep on mention of forces (of attraction) or bonds Mention of covalent bonds or intermolecular forces no M1	ions are free to move / ions are mobile ionic bonding / ionic bonds break the bonds	electrons free to move	1 3

Question number	Answer	Accept	Reject	Marks
7 (a)	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}$	multiples and fractions		1
(b)	M1 32 (of S) $\rightarrow 80$ (of SO_{3}) (tonnes or g) M2 mass of $\mathrm{SO}_{3}=\frac{80}{32} \times 80$ M3 $=200$ (tonnes) M2 csq on M1 M3 csq on M2 Correct answer with no working scores 3	$\begin{aligned} & \text { M1 } n(\mathrm{~S})=\left(n\left(\mathrm{SO}_{3}\right)\right)=\frac{80 \times 10^{6}}{32}(\mathrm{~mol})(=2 \\ & 500000(\mathrm{~mol})) \\ & \mathbf{M 2} \text { mass of } \mathrm{SO}_{3}=\mathbf{M 1} \mathbf{~} \mathbf{8 0} \mathbf{(= \mathbf { 2 0 0 } \mathbf { 0 0 0 }} \\ & \mathbf{0 0 0}(\mathbf{g})) \\ & \mathbf{M 3}=\mathbf{M 2} \div 10^{6} / 200 \text { (tonnes) } \end{aligned}$		3
(c)	M1 $64(\mathrm{~g})\left(\right.$ of $\left.\mathrm{SO}_{2}\right)$ reacts with $12\left(\mathrm{dm}^{3}\right)$ (of O_{2}) M2 (64 tonnes) reacts $12 \times 10^{6}\left(\mathrm{dm}^{3}\right)$ OR $1.2 \times 10^{7}\left(\mathrm{dm}^{3}\right)$ M2 csq on M1 Correct answer with no working scores 2	M1 $n\left(\mathrm{SO}_{2}\right)=\frac{64 \times 10^{6}}{64}(\mathrm{~mol})\left(=10^{6} \mathrm{~mol}\right)$ M2 $\frac{\text { M1 }}{2} \times 24 / 1.2 \times 10^{7}\left(\mathrm{dm}^{3}\right)$ OR M1 mass of oxygen accept $1.2 \times 10^{10} \mathrm{~cm}^{3}$		2

Question number	Answer	Accept	Reject	Marks
8	M1 - add (aqueous) chlorine to (aqueous) KBr M2 - (solution) turns orange M3 - add (aqueous) bromine to (aqueous) KI M4 - (solution) turns brown $\mathbf{M} 5-\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl}$ OR $\mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KBr}$ Ignore state symbols	yellow / brown red-brown / orange correct ionic equations accept $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+$ 2 KCl if chlorine is added to potassium iodide	red yellow	5

Question number	Answer	Accept	Reject	Marks
8	M1 - add (aqueous) bromine to (aqueous) KCl M2 - no change M3 - add (aqueous) iodine to (aqueous) KBr M4 - no change / no change If this route is chosen then M5 cannot be scored	orange / yellow / brown solution/colour produced only if it is clear that no reaction has occurred brown / red-brown / orange solution/colour produced only if it is clear that no reaction has occurred	red yellow	5

Total 5 marks

Question number	Answer	Accept	Reject	Marks
$9(\mathrm{a})(\mathrm{i})$ (ii) (iii)	shifts to left shifts to the right impossible to know which shift is greater / impossible to know which change has the greater effect	moves in the endothermic direction shifts to the side of the reactants OWTTE moves in the exothermic direction shifts to the side of the products OWTTE shifts to the side with fewer (gas) moles/molecules OWTTE the (two) effects are opposing one another		1
(b)	M1 - greater proportion of NO_{2} M2 - (increase of) temperature has a greater effect than (increase of) pressure	more NO_{2} present equilibrium shifts to left		2

Total 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

