Mark Scheme (Results)

January 2015

Pearson Edexcel International GCSE in Chemistry (4CHO) Paper 1C

Pearson Edexcel Certificate in
Chemistry (KCHO) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code UG040479
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

			Answer		Notes		Marks
1	a		\square \square	$\underbrace{\mathrm{O}^{\circ} \mathrm{O}}_{\mathrm{o}}$			1
	b	i	A (an electron)				1
		ii	B (a neutron)				1
		iii	B (electrons and protons)				1
	c		isotopes				
			atomic numbers				3
			mass numbers				
						Total	7 marks

Question number	Answer	Notes	Marks
3 a	burns with a pop/squeak OR use burning/lit splint/flame to see if pop/squeak	Must be reference to test and result Reference to splint/match with no indication of flame is not enough Ignore flame extinguished Reject reference to glowing splint Squeaky pop test on its own is not enough	1
b i	anhydrous/white copper sulfate turns blue OR anhydrous/blue cobalt chloride turns pink	Ignore colourless Accept correct formula Incorrect formula (eg CuSO) counts as near miss	Accept correct formula Incorrect formula (eg CoCl) counts as near miss
ii	measure boiling point / freezing point	Mccept boil it / freeze it Ignore heat	2
	/ O (${ }^{\circ} \mathrm{C}$)	Value must match property Ignore units	2

Question number	Answer	Notes	Marks
3 b iii	cross by carbon dioxide from the air reacts to cause the cloudiness cross by the cloudiness is caused by the formation of a white precipitate \square carbon dioxide forms when the hydrogen burns $\|X\|$ carbon dioxide from the air reacts to cause the cloudiness \square the cloudiness is caused by the formation of calcium hydroxide XI the cloudiness is caused by the formation of a white precipitate \square the reaction in the limewater is an example of oxidation	If 3 boxes crossed then max 1 If 4 or more boxes crossed then 0	

Question number	Answer	Notes	Marks
4 d	(a substance that) increases rate of reaction / speeds up reaction / decreases time of reaction is (chemically) unchanged (at the end) OR mass does not change	Ignore change/decrease in rate Ignore references to element / compound Accept is not used up / does not change Accept reference to lowering activation energy Ignore reference to alternative route Ignore references to yield Ignore reference to not reacting or taking part in reaction Ignore refs to being physically unchanged Ignore references to starting reaction Reject reference to providing/increasing energy for M2 Reject reference to incorrect statement such as removes impurities for M2	1 1
e	(approximately) vertical line between hydrogen peroxide and top of curve AND labelled activation energy / E_{a}	ignore arrowheads on vertical line	1
	curve starting from hydrogen peroxide line and ending at water + oxygen line AND peak below peak of original curve	Accept near misses, such to and from words Accept curve leaving or joining original curve Do not penalise more than one peak	1
		Total 9 marks	

Question number	Answer	Notes	Marks
$5 \quad a \quad i$ ii	$\begin{aligned} & 4 \\ & B \text { (hydrated) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
b i ii	aluminium hydroxide AND sodium sulfate smothers/blankets the fuel/fire / sinks onto to fuel/fire (therefore) prevents oxygen/air from reaching the fuel/fire	Accept in either order Ignore formulae / oxidation numbers Accept high density / higher density than air/oxygen Ignore heavier than air/oxygen Accept does not support combustion Ignore carbon dioxide does not burn	1 1 1
C i ii	$\mathrm{Al}(\mathrm{OH})_{3}$ has (s) / is solid /is insoluble / its ions not free / its ions not released $\mathrm{H}_{2} \mathrm{SO}_{4}$ has (aq) / is a solution AND $\left(\mathrm{H}^{+}\right)$ions are released B (5.5)		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Total 8 marks			

Question number	Answer	Notes	Marks
6 a	C (diffusion)		1
b	ammonia (moves more quickly) AND it travels further /white solid is close(r) to the HCl end / further from the NH_{3} end	Ignore reference to solution Ignore reverse argument for HCl Ignore references to reacting more quickly	1
c i	Sodium hydroxide / NaOH ammonia / NH blue	Accept other suitable alkalis Reject ammonium Reject all other colours M3 DEP on M2 or near miss Accept to prevent other ions interfering / to prevent other precipitates from forming Ignore to make sure other reactions do not occur	1

Question number	Answer	Notes	Marks
$7 \quad$ a	fractional distillation/fractionating column/tower	(crude oil) heated/vaporised / boiled cooler at top/hotter at bottom/idea of temperature gradient fractions condense /separate at different heights/levels fractions have different boiling points/ranges	Reference to fractional / fractionating needed Ignore references to fracking
Accept components / hydrocarbons / compounds / gases Accept separate at different temperatures Ignore references to melting point Any four for 1 mark each If any reference to cracking, MAX 2 M1 - M4 can be scored from suitably labelled diagram	4		

Question number	Answer	Notes	Marks
$\begin{array}{llll}7 & \mathrm{~b} & \text { i } \\ & & \\ & & & \text { ii }\end{array}$	```Cn}\mp@subsup{\textrm{H}}{2n+2}{ same/similar chemical properties/reactions/behaviour/characteristics gradation / gradual change / trend / increase / decrease of physical properties same functional group (neighbouring) members differ by CH2```	Do not penalise inappropriate spaces or failure to show 2 and n as subscripts Ignore specific examples such as react with oxygen Ignore similar (type of) reactivity Do not penalise reference to trends Accept reference to specific property, eg boiling point Reject same / similar physical properties Ignore variable physical properties Ignore reference to specific group Any two for 1 each Accept two answers on one answer line Ignore any reference to properties not specified as physical or chemical	1 2
C	(1) $\begin{array}{llll}5 & 3 & 4\end{array}$	Accept multiples and fractions	1
$\begin{array}{cc} \text { d } \left.\quad \begin{array}{l} i \\ \\ i i \end{array}\right] \end{array}$	carbon monoxide / CO reduces capacity of blood to carry oxygen / OWTTE	Accept correct explanation involving haemoglobin Ignore references to carbon monoxide reacting with blood / red blood cells	1 1
iii	nitrogen/ N_{2} AND oxygen/ O_{2}	Accept in either order Ignore N and O	1

Question number	Answer	Notes	Marks
7 e		Penalise missing H atoms once only provided all bonds are correctly shown Penalise missing bonds in both structures	1 1

Question number	Answer	Notes	Marks
7 f i	setting out correct division of each \% by A_{r} OR 4.4, 11.1 and 1.1 division by smallest /ratio of 4:10:1 $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}_{(1)}$	Award 0/3 if division by any atomic numbers / wrong way up / multiplication used / wrong atomic mass (eg 16 for C) Do not penalise roundings and minor misreads of \% values, eg 11 for H and 36.5 for S If molecular mass used for H, no M1, but can award M2 and M3 but no CQ in ii Using 2 for H gives $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~S}$ Working required for this answer M2 subsumes M1 Accept elements in any order Award 3 for correct final answer with no working No ECF from M2 Accept use of 90 from ii, i.e. $90 \times 0.533=48$ etc scores M1 ratio scores M2, answer scores M3	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$
ii	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}_{(1)}$	Accept elements in any order No other answer acceptable	1

Question number	Answer	Notes	Marks
8 a	hydrogen / H_{2}	Ignore H	1
b	only single bonds (between carbon atoms) /single bond(s) between carbon atoms	ignore between C and H Accept no double bond(s) / no multiple bond(s) Ignore answers that refer to numbers of hydrogens	1
c i ii		Accept Br atoms in any position provided one on each carbon	1 1
d		M1 for $4 \times \mathrm{C}$ AND $6 \times \mathrm{H}$ and $2 \times \mathrm{CH}_{3}$ M2 for extension bonds and two CH_{3} groups on alternate carbon atoms (can be both above or both below carbon chain) M2 DEP on M1 Do not penalise bonds to H of CH_{3} Ignore brackets and subscripted n If any double bond shown, then $0 / 2$	2
e		Reject any extension bonds Ignore bond angles Do not penalise more than one correct structure	1

Question number	Answer	Notes	Marks
8 f i	(polymer) breaks down / decomposes / decays	Do not penalise compound / object / molecule / substance in place of polymer Reject element in place of polymer Ignore rots / degrades / digests / disintegrate If reference to not breaking down etc, only M2 can be awarded Ignore naturally / enzymes	1
ii	inert / unreactive / OWTTE	Ignore do not react with named chemical Ignore references to bond strengths / bond breaking	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 9 a \& C (lithium reacts with water to form an alkali) \& \& 1 \\
\hline b \& A (have the same number of outer shell electrons) \& \& 1 \\
\hline c \& ```
(similar)
bubbles / fizzing / effervescence
OR
moves / darts / floats
OR
gets smaller / disappears
potassium shows a flame / sparks / explodes
OR
potassium melts / forms ball
``` \& \begin{tabular}{l}
Accept gas given off /evolved/formed/produced \\
Accept hydrogen gas \\
Ignore identity of gas \\
Accept dissolves \\
Accept reverse arguments for lithium
\end{tabular} \& 1

1 <br>

\hline d \& \[
$$
\begin{aligned}
& \mathrm{K} \mathrm{~K}_{2} \mathrm{O} \\
& \mathrm{KCl}
\end{aligned}
$$

\] \& | Accept $\mathrm{K}_{2} \mathrm{O}_{2}$ and $\mathrm{KO}_{2}$ |
| :--- |
| Reject KO |
| If formula shown as product of an equation, ignore reactants and balancing |
| Ignore coefficients | \& \[

1
\]

$$
1
$$ <br>

\hline e \& s l aq g \& \& 1 <br>
\hline f \& 85 AND 87 calculated (even if not identified)

\[
(85 \times 0.72)+(87 \times 0.28)=85.6

\] \& | Accept $37+48$ and $37+50$ |
| :--- |
| Correct final answer $=2$ marks |
| 85.5 or $85.56=1$ mark |
| No ECF from incorrect mass numbers Ignore units | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] <br>

\hline \& \& \multicolumn{2}{|r|}{Total 9 marks} <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 10 a \& \begin{tabular}{l}
```
mix / add / react (the two) solutions / salts
together
stir
filter
wash (with water)
suitable method of drying
``` \\
identifying two suitable pieces of apparatus
\end{tabular} \& \begin{tabular}{l}
Ignore references to volumes \\
Accept swirl \\
Accept description of filtration \\
eg warm / heat / place in oven / leave on window ledge / leave to dry / dry with filter paper or kitchen towel \\
Not just dry \\
Any four above for 1 mark each \\
If M3 not scored then M4 and M5 cannot be awarded \\
If description of evaporation of solution, then M4 and M5 cannot be awarded \\
Any two of \\
- beaker / flask / test tube (for mixing) \\
- (glass) rod (for stirring) \\
- (filter) funnel/paper (for separation) \\
Reference to filter paper or filter funnel scores M3 and counts as one of M6 \\
If any other substance added, then MAX 4
\end{tabular} \& 4

1 <br>
\hline
\end{tabular}



| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $\begin{array}{lll} 11 & \text { a } & \text { i } \\ & & \text { ii } \end{array}$ | pipette <br> pink <br> colourless | Ignore purple <br> Accept red <br> Ignore clear <br> Ignore white <br> Award 1 mark for both colours correct in wrong order | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| b | (after) 23.15 <br> (before) 1.40 <br> (added) 21.75 | CQ on before and after readings <br> Award 1 mark for both readings correct but in wrong order <br> All values must be to 2 dp <br> Penalise answers to other than 2 dp once only | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$ |
| $\begin{array}{ll} \hline \text { c } & \text { i } \\ & \text { ii } \end{array}$ | ticks in columns 3 and 4 $\frac{21.10+21.20}{2}$ $21.15$ | CQ on any combination of ticked results If no results ticked, award M1 if only columns 3 and 4 averaged <br> If only 1 result ticked, then no marks can be awarded in (c) <br> CQ on results averaged - see separate table <br> Answer should be to 2 dp , except that trailing zero not needed <br> Correct final answer without working scores 2 | $1$ <br> 1 |



| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 a | mass / amount surface area / size / volume | Accept weight <br> Ignore number of marble chips <br> Ignore length / width / height / thickness / <br> shape / type <br> Ignore temperature / purity / density | $1$ $1$ |
| b | gas/carbon dioxide escapes / OWTTE | Ignore references to solid dissolving Ignore references to acid spray / vapour Do not penalise incorrectly named gas (eg hydrogen) | 1 |
| c | prevents loss of acid (spray)/liquid | Ignore references to evaporation / water vapour / spilling of liquid Reject references to stopping gases/marble chips escaping | 1 |
| d i <br> ii | $210 \text { (s) }$ <br> some indication of mark on curve OR vertical line from 50\% / horizontal line from 210 s <br> $B$ (the loss of mass was greater than 1.0 g | Mark M1 and M2 independently | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ <br> 1 |
| e | $\begin{aligned} & 1 \div 210 \\ & \text { evaluation of } \mathrm{M} 1 / 0.00476 \end{aligned}$ | Accept any time value in range 200-210 Accept answer in range 0.004-0.005 Accept any number of sig fig | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 f |  <br> all five points plotted to nearest gridline straight line of best fit | Deduct 1 mark for each error up to max 2 <br> Line need not be extrapolated to origin If line not extrapolated, it should go to the origin if extrapolated Must be drawn with a ruler CQ on candidate's plotted points | 2 1 |


| Question <br> number | Answer | Notes | Marks |
| :--- | :--- | :--- | :---: |
| 12 g | more particles (in a given volume) | Accept ions <br> Reject atoms / molecules <br> Accept quantitative answer such as twice as <br> many particles when concentration doubles | 1 |
|  | more collisions (between particles) / <br> OWTTE <br> per unit time / OWTTE | more frequent collisions scores M2 and M3 <br> Ignore greater chance/likelihood of collisions <br> Accept reverse argument if clear that decreasing <br> concentration is being considered <br> MAX 1 if any reference to particles moving faster <br> / having more energy | 1 |

