

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – October/November 2015	9702	22	
				0777898626

1 (a)
$$v = f\lambda$$

$$\lambda = (3.0 \times 10^8)/(4.6 \times 10^{20})$$

C1

$$(=6.52 \times 10^{-13} =) 0.65(2) pm$$

(b)
$$t = (8.5 \times 10^{16})/(3.0 \times 10^8)$$

$$(= 2.83 \times 10^8 =) 0.28(3) Gs$$

(c) mass, power and temperature all underlined and no others

B1 [1]

B1 [1]

C1

e.g. $[14^2 + 8.0^2 - 2(14)(8.0) \cos 60^\circ]^{1/2}$ **or** $[(14 - 8.0 \cos 60^{\circ})^{2} + (8.0 \sin 60^{\circ})^{2}]^{1/2}$

resultant velocity = 12(.2) (or 12.0 to 12.4 from scale diagram) m s⁻¹

[2] **A1**

2 (a) (i)
$$v = u + at$$

$$0 = 3.6 - 3.0t$$

$$t = 3.6/3.0 = 1.2s$$

Α1 [2]

(ii) (distance to rest from P =
$$(3.6 \times 1.2)/2 = 2.2 (2.16)$$
 m

A1 [1]

$$[0 - (3.6)^2]/[2 \times (-3.0)] = 2.2 (2.16) m$$

$$3.6 \times 1.2 - \frac{1}{2} \times 3.0 \times (1.2)^2 = 2.2 (2.16) \text{ m}$$

$$0 + \frac{1}{2} \times 3.0 \times (1.2)^2 = 2.2 (2.16) \text{ m}$$

C1

(b) distance = 6.0 - 2.16 (= 3.84)

$$v^2 = u^2 + 2as = 2 \times 3.0 \times 3.84 (= 23.04)$$

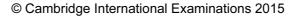
M1

or

$$x + 2 \times 2.16 = 6.0$$
 gives $x = 1.68$ (m)

(C1)

$$v^2 = 3.6^2 + 2 \times 1.68 \times 3.0 (= 23.04)$$


(M1)

or correct method with intermediate time calculated (t = 1.6 s from Q to R)

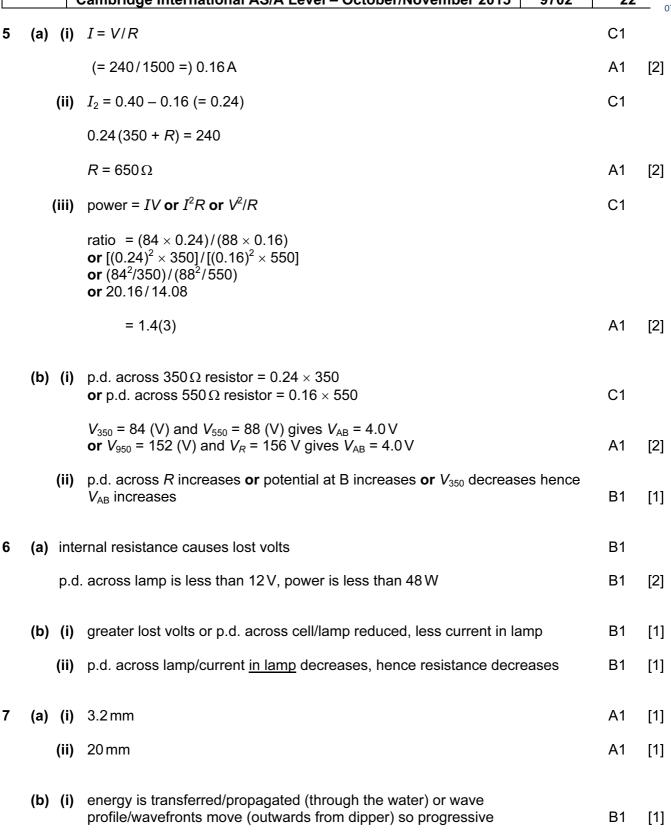
$$v = 4.8 \,\mathrm{m \, s^{-1}}$$

A0 [2]

Pa	age 3		Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
		Cambridge Ir	nternational AS/A Level – October/November 2015	9702	22	0777898626
	(c) :	straight line from	$v = 3.6 \text{ m s}^{-1} \text{ to } v = 0 \text{ at } t = 1.2 \text{ s}$		B1	
	;	straight line cont	inues with the same gradient as v changes sign		B1	
	;	straight line from	$v = 0$ intercept to $v = -4.8 \mathrm{m s^{-1}}$		B1	[3]
	(d) (difference in KE	= $\frac{1}{2}m(v^2 - u^2)$ = $0.5 \times 0.45 (4.8^2 - 3.6^2)$ [= $5.184 - 2.916$]		C1	
			= 2.3 (2.27) J		A1	[2]
3	(a)	(i) $k = F/x$ or 1	/gradient		C1	
		(k = 4.4/(5.4))	4×10^{-2}) =) 81 (81.48) N m ⁻¹		A1	[2]
	(ii) work done =	area under line or ½Fx or ½kx²		C1	
		(=	$0.5 \times 4.4 \times 5.4 \times 10^{-2} =) 0.12 (0.119) J$		A1	[2]
	(b)		gy/E_k of trolley/T (and block) changes to EPE/strain tic energy of spring		B1	
		EPE change	es to KE <u>of trolley/T</u> and KE <u>of block</u> or to give <u>lower</u> k	E to trolley	B1	[2]
	(ii) change in m	nomentum = m(v + u)		C1	
			= 0.25 (0.75 + 1.2) = 0.49 (0.488) Ns		A1	[2]
4	(a)	product of the fo	rce and the perpendicular distance to/from a point/piv	ot	B1	[1]
	(b)	· ,	$< \sin 30^{\circ}$ or $500 \times 1.4 \times \sin 30^{\circ}$ or $T \times 2.8$ 4 or 500×0.7		B1	
			$x \sin 30^{\circ} + 500 \times 1.4 \times \sin 30^{\circ} = T \times 2.8$ 100 (2125) N		M1 A0	[2]
	(ii) $(T_v = 2100 \text{ c})$	os 60° =) 1100 (1050)N		A1	[1]

upward force at A + T_v = sum of downward forces/weight+load/4500 N

(iii) there is an upward (vertical component of) force at A


В1

В1

[2]

Page	4	Mark Scheme	Syllabus	Paper	PLATIN BUSINESS AC
		Cambridge International AS/A Level – October/November 2015	9702	22	07778986
5 (a) (i	I = V/R		C1	07778380

(ii) to produce waves with constant/zero phase difference/coherent waves

B1

[1]

P	age 5	5	Mark Scheme	Syllabus	Pape	r PLATINUM
		(Cambridge International AS/A Level – October/November 2015	9702	22	0777898626
	(c)	(i)	path difference is λ		B1	0777836020
			water vibrates/oscillates with amplitude about $2\times3.2\text{mm}$		B1	[2]
		(ii)	path difference is $\lambda/2$ so little/no motion/displacement/amplitude		B1	[1]
8	(a)		ult: majority/most (of the α -particles) went <code>straight</code> through/were devall angles	viated by	M1	
			nclusion: <u>most</u> of the atom is (empty) space or size/volume of nucleuall <u>compared with atom</u>	ıs <u>very</u>	A1	
			ult: a small proportion were deflected through large angles or >90° o aight back	or came	M1	
			nclusion: the mass or majority of mass is in a (very) small charged ume/region/nucleus		A1	[4]
	(b)	ρ=	m/V		C1	
			ss of atom and mass of nucleus (approx.) equal stated \textbf{or} cancelled en e.g. $63u$ or $63\times1.66\times10^{-27}$	or values	C1	
		rati or	o = $(r_A)^3/(r_N)^3$ = $(1.15 \times 10^{-10})^3/(1.4 \times 10^{-14})^3$			
			o = $(d_A)^3/(d_N)^3$ = $(2.3 \times 10^{-10})^3/(2.8 \times 10^{-14})^3$ = 5.5×10^{11}		A1	[3]