

CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

				,		
Pa	age 2	2	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
			Cambridge International AS/A Level – May/June 2015	9702	42	0777898626
1	(a)	(i)	1. $F = Gm_1m_2/x^2$ = $(6.67 \times 10^{-11} \times 2.50 \times 5.98 \times 10^{24})/(6.37 \times 10^6)^2$ = 24.6 N (accept 2 s.f. or more)		M1 A1	[2]
			2. $F = mx\omega^2$ or $F = mv^2/x$ and $v = \omega x$ (accept x or r for distance) = $2.50 \times 6.37 \times 10^6 \times (2\pi/24 \times 3600)^2$		C1	
			$= 0.0842 \mathrm{N} (accept 2 s.f. or more)$		A1	[2]
		(ii)	reading = 24.575 – 0.0842 = 24.5N (<i>accept only 3 s.f.</i>)		B1 A1	[2]
	(b)	•	vitational force provides the centripetal force vitational force is 'equal' to the centripetal force		M1	
			cept $Gm_1m_2/x^2 = mx\omega^2$ or $F_c = F_G$)		M1	
			ight'/sensation of weight/contact force/reaction force is difference be $I\!$	etween F _G	A1	[3]
2	(a)	me	an speed = $1.44 \times 10^3 \mathrm{ms^{-1}}$		A1	[1]
	(b)	evio me	dence of summing of individual squared speeds an square speed = $2.09 \times 10^6 \text{ m}^2 \text{ s}^{-2}$		C1 A1	[2]
	(c)		t-mean-square speed = 1.45 × 10 ³ m s ⁻¹ ow ECF from (b) but only if arithmetic error)		A1	[1]
3	(a)	ùnit at c	merically equal to) quantity of heat/(thermal) energy to change state t mass constant temperature ow 1/2 for definition restricted to fusion or vaporisation)	/phase of	M1 A1	[2]
	(b)	(i)	constant gradient/straight line (allow linear/constant slope)		B1	[1]
		(ii)	$Pt = mL \text{ or power} = \text{gradient} \times L$		C1	
			use of gradient of graph (or two points separated by at least 3.5 minutes)		M1	
			$110 \times 60 = L \times (372 - 325) \times 10^{-3}/7.0$ L = 9.80 × 10 ⁵ J kg ⁻¹ (accept 2 s.f.) (allow 9.8 to 9.9 rounded to 2 s.f.)	f.)	A1	[3]
		(iii)	some energy/heat is lost to the surroundings <i>or</i> vapour condenses so value is an overestimate	on sides	M1 A1	[2]
4	(a)		placement (directly) proportional to acceleration/force displacement and acceleration in opposite directions acceleration (always) towards a (fixed) point		M1 A1	[2]

Ρ	age :	3	Mark Scheme	Syllabus	Раре	er PLA
			Cambridge International AS/A Level – May/June 2015	9702	42	- 077
	(b)	(i)	⅓π rad or 1.05 rad (<i>allow 60° if unit clear</i>)		A1	[1]
		(ii)	$a_0 = -\omega^2 x_0$ = (-) $(2\pi/1.2)^2 \times 0.030$ = (-) $0.82 \mathrm{m s^{-2}}$ (special case: using oscillator P gives $x_0 = 1.7 \mathrm{cm}$ and $a_0 = 0.47 \mathrm{m s^{-2}}$	⁻¹ for 1/2)	C1 A1	[2]
		(iii)	max. energy $\propto x_0^2$ ratio = $3.0^2/1.7^2$ = 3.1 (at least 2 s.f.) (if has inverse ratio but has stated max. energy $\propto x_0^2$ then allow 1/2	2)	C1 A1	[2]
	(c)		ph: straight line through (0,0) with negative gradient rect end-points (–3.0, +0.82) and (+3.0, –0.82)		M1 A1	[2]
5	(a)		rk done bringing/moving per unit positive charge m infinity (to the point)		M1 A1	[2]
	(b)	(i)	slope/gradient (of the line/graph/tangent) (allow dV/dx, but not <i>Δ</i> V/ <i>Δ</i> x or V/x) (allow potential gradient) (negative sign not required)		B1	[1]
		(ii)	maximum at surface of sphere A or at $x = 0$ (cm) zero at $x = 6$ (cm) then increases but in opposite direction (any mention of attraction max. 2/3)		B1 B1 B1	[3]
	(c)	(i)	M shown between $x = 5.5$ cm and $x = 6.5$ cm		B1	[1]
		(ii)	1. $\Delta V = (570 - 230) = 340 \vee (allow 330 \vee to 340 \vee)$		A1	[1]
			2. $q(\Delta)V = \frac{1}{2}mv^2$ or change/loss in PE = change/gain in KE or $\Delta E_{\rm P}$	$_{\rm X} = \Delta E_{\rm P}$	B1	
			$4.8 \times 10^7 \times 340 = \frac{1}{2}v^2$ $v^2 = 3.26 \times 10^{10}$		C1	
			$v = 1.8 \times 10^5 \mathrm{m s^{-1}}$ (not 1 s.f.)		A1	[3]
6	(a)		cket/quantum/discrete amount of energy electromagnetic energy/radiation/waves		M1 A1	[2]
	(b)	(i)	arrow below axis and pointing to right		B1	[1]

Page 4	Mark Scheme Syl	labus	Paper	PLATINUM
J -		702	42	0777898626
	(ii) 1. $E = hc/\lambda$ = $(6.63 \times 10^{-34} \times 3.0 \times 10^8)/(6.80 \times 10^{-12})$ = 2.93×10^{-14} J (accept 2 s.f.)		C1 A1	[2]
	2. energy of electron = $(3.06 - 2.93) \times 10^{-14}$ = 1.3×10^{-15} J speed = $\sqrt{(2E/m)}$		C1 C1	
	= $5.4 \times 10^7 \mathrm{ms^{-1}}$			[3]
(c)	momentum is a vector quantity <i>either</i> must consider momentum in two directions		B1	
	or direction changes so cannot just consider magnitude		B1	[2]
7 (a)	moving magnet gives rise to/causes/induces e.m.f./current in solenoid/coil (induced current) creates field/flux in solenoid that opposes (motion of) mag work is done/energy is needed to move magnet (into solenoid) (induced) current gives heating effect (in resistor) which comes from the work		B1 B1 B1 B1	[4]
(b)	current in primary coil give rise to (magnetic) flux/field (magnetic) flux/field (in core) is in phase with current (in primary coil) (magnetic) flux threads/links/cuts secondary coil inducing e.m.f. in secondar (there must be a mention of secondary coil) e.m.f. induced proportional to <u>rate</u> of change/cutting of flux/field so not in phase	-	B1 B1 B1 B1	[4]
8 (a)	(i) energy = $5.75 \times 1.6 \times 10^{-13}$ = 9.2×10^{-13} J		A1	[1]
	(ii) number = $1900/(9.2 \times 10^{-13} \times 0.24)$ = $8.6 \times 10^{15} s^{-1}$		C1 A1	[2]
(b)	(i) decay constant = $0.693/(2.8 \times 365 \times 24 \times 3600)$ = $7.85 \times 10^{-9} \text{ s}^{-1}$ (allow 7.8 or 7.9 to 2 s.f.)		C1 A1	[2]
	(ii) $A = \lambda N$ 8.6 × 10 ¹⁵ = 7.85 × 10 ⁻⁹ × N $N = 1.096 \times 10^{24}$		C1 C1	
	mass = $(1.096 \times 10^{24} \times 236)/(6.02 \times 10^{23})$ = 430 g		M1 A1	[4]
(c)	$0.84 = 1.9 \exp(-7.85 \times 10^{-9} t)$ t = 1.04 × 10 ⁸ s		C1	
	= 3.3 years		A1	[2]

Page 5		5	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
			Cambridge International AS/A Level – May/June 2015	9702	42	0777898626
			Section B			
9	(a)		= 1000 mV en strained, V _A = 2000 × 121.5/(121.5 +120.0)		C1	
			= 1006.2 mV		M1	
		cha	ange = 6.2 mV (<i>allow 6 mV</i>)		A1	[3]
	(b)	(i)	1. resistor between V_{IN} and V^- and V^+ connected to earth		B1	[0]
			resistor between V ⁻ and V _{OUT}			[2]
			2. P/+ sign shown on earth side of voltmeter			[1]
		(ii)			M1	
			R_{IN} between 100 Ω and 10 k Ω (any values must link to the correct resistors on the diagram)		A1	[2]
10	(a)	•	duct of density (of medium) and speed (of ultrasound)		M1	ro]
		in ti	he medium		A1	[2]
	(b)	(i)	$7.0 \times 10^6 = 1.7 \times 10^3 \times \text{speed}$		C1	
			speed = $4.12 \times 10^3 \text{ m s}^{-1}$ wavelength = $(4.12 \times 10^3)/(9.0 \times 10^5) \text{ m}$		C1	
			= $4.6 \text{ mm} (2 \text{ s.f. minimum})$			[3]
		(ii)	for air/tissue boundary, $I_{\rm R}/I \approx 1$		M1	
			for air/tissue boundary, (almost) complete reflection/no transmission for gel/tissue boundary, $I_R/I = 0.1^2/3.1^2$	n	A1	
			$= 1.04 \times 10^{-3}$ (accept 1 s.f.)		M1	
			gel enables (almost) complete transmission (into the tissue)		A1	[4]
11	(a)	(i)	metal (allow specific example of a metal)		B1	[1]
		(ii)	e.g. provides 'return' for the signal shields inner core from interference/reduces cross-talk/reduces	s noise		
			increased security	5110130		
			(any two sensible suggestions, 1 each)		B2	[2]
	(b)	(i)	(gradual) loss of power/intensity/amplitude		B1	[1]
		(ii)	dB is a log scale		B1	
		. /	<i>either</i> large (range of) numbers are easier to handle (on a log scal or compounding attenuations/amplifications is easier	e)	B1	[2]
		o#**	enuation = $190 \times 11 \times 10^{-3} = 2.09 \text{dB}$		C1	
				C1		
			o = 0.62			[3]

Page 6	Mark Scheme	Syllabus	Paper	PLATINU
	Cambridge International AS/A Level – May/June 2015	9702	42	- 077789862
base	lset transmits (identification) signal to number of base stations stations transfers (signal) to cellular exchange (idea of station <u>s</u> needed at least once in first two marking points)		B1 B1	
comp	outer at cellular exchange selects base station with strongest signal outer at cellular exchange selects a carrier frequency for mobile phone <i>(idea of computer needed at least once in these two marking points)</i>		B1 B1	[4]