PLATINUM
BUSINESS ACADEMY
0777898626
COM

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\bf @}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – May/June 2015	9702	22	
				0777898626

(a) (work =) force \times distance or force \times displacement or (W =) $F \times d$

units of work: $kg m s^{-2} \times m = kg m^2 s^{-2}$

A1 [2]

M1

(b) $(p.d. =) \frac{\text{work (done) or energy (transformed) (from electrical to other forms)}}{}$ charge

B1

[1]

(c) R = V/I**B1**

units of V: $kg m^2 s^{-2}/As$ and units of I: A

C₁

(C1)

B1

[2]

$$R = P/I^2$$
 [or $P = VI$ and $V = IR$] (B1)

units of P: $kg m^2 s^{-3}$ and units of I: A

or

$$R = V^2/P \tag{B1}$$

units of V: $kg m^2 s^{-2}/A s$ and units of P: $kg m^2 s^{-3}$ (C1)

units of
$$R$$
: $(kg m^2 s^{-2}/A^2 s =) kg m^2 s^{-3} A^{-2}$ A1 [3]

2 **B1** (a) speed decreases/stone decelerates to rest/zero at 1.25 s

speed then increases/stone accelerates (in opposite direction)

(b) (i) v = u + at (or $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$) C1

$$= 0 + (3.00 - 1.25) \times 9.81$$

$$= 17.2 (17.17) \,\mathrm{m \, s^{-1}}$$
 A1 [3]

(ii) $s = ut + \frac{1}{2}at^2$

$$s = \frac{1}{2} \times 9.81 \times (1.25)^2 [= 7.66]$$
 C1

$$s = \frac{1}{2} \times 9.81 \times (1.75)^2 = 15.02$$

C₁

(distance = 7.66 + 15.02)

$$[v = u + at = 0 + 9.81 \times (2.50 - 1.25) = 12.26 \,\mathrm{m \, s^{-1}}]$$

or

$$s = \frac{1}{2} \times 9.81 \times (1.25)^2 = 7.66$$
 (C1)

$$s = 12.26 \times 0.50 + \frac{1}{2} \times 9.81 \times (3.00 - 2.50)^2 = 7.36$$
 (C1)

 $(distance = 2 \times 7.66 + 7.36)$

Example alternative method:

$$s = (v^2 - u^2)/2a = (12.26^2 - 0)/2 \times 9.81 [= 7.66]$$
 (C1)

$$s = (v^2 - u^2)/2a = (17.17^2 - 12.26^2)/2 \times 9.81 [= 7.36]$$
 (C1)

 $(distance = 2 \times 7.66 + 7.36)$

Page 3		Mark Scheme Syllabus		Pape	PLATINUM BUSINESS ACADEMY
		Cambridge International AS/A Level – May/June 2015	9702	22	0777898626
		22.7 (22.69 or 23) m		A1	[3]
	(iii) (s = 15.02 – 7.66 =) 7.4 (7.36) m (ignore sign in answer)		A1	
		down		A1	[2]
	(c) s	traight line from positive value of v to t axis		M1	
	S	ame straight line $\underline{\text{crosses}}\ t$ axis at $t = 1.25\text{s}$		A1	
	S	ame straight line continues with same gradient to $t = 3.0 \mathrm{s}$		A1	[3]
3	(a) (i) (vertical component = 44 sin 30° =) 22 N		A1	[1]
	(ii) (horizontal component = 44 cos 30° =) 38(.1) N		A1	[1]
	(b) V	V × 0.64 = 22 × 1.60		C1	
	(1	<i>N</i> =) 55 N		A1	[2]
	0	has a horizontal component (not balanced by <i>W</i>) r <i>F</i> has 38 N acting horizontally r 38 N acts on wall			
		r vertical component of <i>F</i> does not balance <i>W</i> r <i>F</i> and <i>W</i> do not make a closed triangle of forces		B1	[1]
	(d) lii	ne from P in direction towards point on wire vertically above W and directi	on up	B1	[1]
4	(a) (µ	o =) mv		C1	
	Δ	$p (= -6.64 \times 10^{-27} \times 1250 - 6.64 \times 10^{-27} \times 1250) = 1.66 \times 10^{-23} \text{ Ns}$		A1	[2]
	(b) (i) molecule collides with wall/container and there is a change in momento	um	B1	
		change in momentum / time is force or $\Delta p = Ft$		B1	
		many/all/sum of molecular collisions over surface/area of container propressure	duces	B1	[3]
	(ii) more collisions per unit time so greater pressure		B1	[1]
5	(a) c	urved line showing decreasing gradient with temperature rise		M1	
	S	mooth line not touching temperature axis, not horizontal or vertical anywhe	ere	A1	[2]
				D .4	F47

В1

[1]

(b) (i) (no energy lost in battery because) no/negligible internal resistance

Page 4	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – May/June 2015	9702	22	
				0777898626

Page 5	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – May/June 2015	9702	22	
			<u>.</u>	0777898626

(c)
$$v = f\lambda$$
 C1
 $f = 3.0 \times 10^8 / (2.8 \times 10^{-2}) [= 1.07 \times 10^{10} \text{Hz}]$ C1
11 (10.7) GHz A1 [3]

7 (a) 92 protons and 143 neutrons B1 [1]

В1 В1 **B**1

[3]

(b) ____

	value	
а	1	
b	0	(a and b both required)
С	141	
d	55	
	·	•

(c) kinetic energy (of products) or gamma/ γ (radiation or photon) В1 [1]

(d) (total) mass on left-hand side/reactants is greater than (total) mass on right-hand side/products M1 difference in mass is (converted to) energy Α1 [2]