

Cambridge International AS & A Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

BIOLOGY

9700/21 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper	PLATINUM
	Cambridge International AS/A Level – May/June 2016	9700	21	0777909626
				0///898020

Mark scheme abbreviations:

; R A AW <u>underline</u> max ora ecf I mp	separates marking points alternatives answers for the same point reject accept (for answers correctly cued by the question, or extra guidance) alternative wording (where responses vary more than usual) actual word given must be used by candidate (grammatical variants accepted) indicates the maximum number of marks that can be given or reverse argument error carried forward ignore marking point (with relevant number)
---	---

must have correct spellings of Plasmodium and Vibrio cholera 1

feature	malaria	tuberculosis	cholera
name of pathogen	Plasmodium ;	Mycobacterium tuberculosis	Vibrio cholerae ;
type of organism	protoctist/protoctistan ; A protist/protozoan/ sporozoan	bacterium	bacterium ; A bacteria
mode of transmission	by, a vector or (feeding or biting by) <i>Anopheles /</i> mosquito ;	via, (airborne) droplets/aerosol(s) (infection) ;	drinking water and food contaminated with human faeces

[6]

[Total: 6]

2	(a) (i)	phagocytosis / endocytosis ; R pinocytosis I engulfing	[1]
	(ii)	E transcription ; F translation ; A post translation(al) modification	[2]
	(111)	 B (phagocytic/endocytic) vacuole/phagosome ; A vesicle R incorrectly qualified vacuole or vesicle (e.g. permanent/large/secretory/Golgi/excretory) I food/pathogenic G (80S) ribosome ; A rough endoplasmic reticulum R RER/rough ER I 70S or any other type of incorrect S as a qualification H Golgi (body/apparatus/complex) ; J mitochondrion ; A mitochondria 	[4]
	(b) I <i>t</i>	usion of lysosomes with phagosome and diffusion of products of digestion	
	1	bacteria are, killed/destroyed/broken down/digested ; A hydrolysed A cell wall broken down R bacteria are cut up	
	2	(by hydrolytic) enzymes ;	
	3	any example, e.g. carbohydrase/lysozyme/protease/nuclease;	
	4	killed by, hydrogen peroxide/H ₂ O ₂ /free radicals/AW;	
	5	AVP ; e.g. correctly named substrate for enzyme murein/peptidoglycan, polysaccharide(s), polypeptides, nucleic acids, lipids e.g. correctly named bonds broken	
		glycosidic, peptide, ester, phosphodiester	[max 3]

Ρ	age	4	Mark Scheme S	yllabus	Paper	PLATINUN BUSINESS ACADEM
			Cambridge International AS/A Level – May/June 2016	9700	21	0777898626
	(c)	1 2 3 4	<i>idea that</i> only, a few/some/small number/AW, with correct specificity (different) T-lymphocytes are specific to different <u>antigens</u> ; (T cell) <u>receptor</u> is, complementary (in shape to antigen); AVP; e.g. this may be during a primary immune response so no memory ce e.g. disease state (HIV/AIDS and leukaemia) or treatment where few T-lymphocytes in the body	y; ells	[max 2	2]
					[Total: 12	2]
3	(a)	(i)	N ciliated ; A pseudostratified I columnar/cuboidal R cilia		['	1]
		(ii)	O mucous glands ; A mucus glands/serous glands		['	1]
		(iii)	P cartilage ;		['	1]
	(b) (c)	I m 1 2 3 4 5 <i>coli</i>	ore air can enter unqualified more air/oxygen, reaches the, alveoli/gas exchange surface ; more gas exchange/greater absorption of oxygen/excretes more car dioxide ; AW A maximises oxygen obtained satisfies increased demand for oxygen/AW ; trachea/bronchi/airways, widen/AW ; e.g. dilate/expand/enlarge A diameter of lumen increases reduces resistance to air flow ; R rate of air flow increases	bon	[max 2	2]
		thre I m glyo (trip	ee <u>polypeptides</u> /a quaternary structure ; ore than one polypeptide unqualified cine is every third amino acid ; I at regular intervals R roughly/approxir ble) helix/helical (shape) ; I regular coils' R alpha helix	nately	[max 2 [Total: 7	2] 7]
4	(a)	<i>trar</i> 1 2 3	 A spiration is an inevitable consequence because stomata open ; for diffusion in of carbon dioxide/carbon dioxide required for photosyn water vapour, diffuses out/moves out down the water potential gradies A description of water potential gradient/high to low water potential A vapour pressure gradient/water vapour gradient allow water vapour if it is clear that evaporation has occurred A water evaporates and diffuses out I water (vapour) concentration gradient 	nthesis ; ent ;	[3]

Page	5	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEM
		Cambridge International AS/A Level – May/June 2016	9700	21	0777898626
(b)	1	<u>adhe</u> sion of water to, cellulose/lining/walls (of xylem vessels) ; A <u>adhe</u> sive force			
	2	A hydrophilic/polar, property of <u>cellulose</u> (fibres) ;			
	3	<u>cohe</u> sion between water molecules ; <u>cohe</u> sive force			
	4 5	ref. to transpiration pull/AW ; I transpiration unqualified		[max]	3]
(c)	mp an	93 – units for rates of transpiration must appear once correctly in the swer to award this point	whole		
	1 2	rate (of transpiration) of all trees is 0 at, 06.00/start ; A no transpiration and the set of transpiration) increase and decrease (in all three) ; A peak	ation		
	3	highest rates: emergent trees at 14.30 at 8.5 kg h ⁻¹	-		
		canopy trees at 14.30 at 3.5 kg h ⁻¹			
		suppressed trees at 13.00 at 1.6–1.7 kg h ⁻¹ ; must have units at least once			
	٨	accept kg/h or kg per hour	io lowost		
	4	rate;	lowest		
		A emergent trees have higher rate than, canopy and suppressed, t	rees		
	5	rate of emergent trees is, much/AW, higher than rates for canopy a	and		
	6	emergent trees have, steeper/steepest, increase in (transpiration)	rate ;		
	-	A emergent trees have, steeper/steepest, decrease in (transpiration	on) rate	[max -	4]
(d)	fol	lowing factors may be given in answers, any three of these factors =	1 mark		
	ligi hu	nt, intensity/wavelength I 'more light' midity			
	ter	nperature			
	wir	nd speed/air movement			
	SIZ	e of tree/height/area of leaves ter availability/depth or length of roots			
	tra	nspiration rate for emergent trees is higher because accept ora fo	r		
	su	ppressed trees			
	ac dif	cept vapour pressure gradient/water vapour pressure gradient/wate fusion gradient for water potential gradient	r vapour		
	1	high(er) light intensity for emergent trees increase in stomatal aper	ture ; ora		
		A more sunlight			
		A stomata open more			
	2	I more stomata open lower humidity for emergent trees so steeper water potential gradie	ent : ora		
	-	A description of water potential gradient	, 014		
	3	higher temperature/AW, for emergent trees so higher rate of,			
	4	evaporation / diffusion; ora			
		gradient/lower humidity ; ora			
	-	A ref. to diffusion shells / descriptions of water potential gradient			
	5	emergent trees have none leaves so greater surface area (more si	tomata		
	U	per unit area (of leaf);	unala	[max -	4]
				[Total: 1	4]

Page 6	Mark Scheme	Syllabus	Paper	PLATINUM
	Cambridge International AS/A Level – May/June 2016	9700	21	0777909626
				0///898626

5 (a) (i) if draw other stages mark first one only – either left to right or top to bottom

(b)

	four chromatids/daughter chromosomes, drawn as single structures between equator and poles ; V shaped, chromatids/daughter chromosomes, in correct orientation ; spindle (fibres) attached to all four, centromeres/kinetochores/apex, and centrioles ; R if these extend between chromatids			
(ii)	1 2	attach to the, centromeres (at prophase) ; A kinetochores I <i>if attach at metaphase</i> attach to, centrioles ; A centrosome/MTOC		
	3 4	arrange the chromosomes on the, equator/metaphase plate ; pull/move, (daughter) chromosomes, apart/to the <u>poles</u> ; A separates <i>for moves apart</i> A (sister/identical) chromatids I ends R homologous chromosomes	[max 2]	
(i)	1 2 3 4	produces/makes/synthesises, haemoglobin ; I fills up produces/makes/synthesises, carbonic anhydrase ; I fills up loss/AW, of the nucleus ; loss/AW, of (named) organelles ;		
	5 6	becomes biconcave/described ; AVP ; e.g. cell surface/antigens/named antigens <i>ref. to</i> cytoskeleton	[max 3]	
(ii)	cell 1 2	Y remains/stays as a, stem cell ; divides/undergoes mitosis ; I <i>ref. to</i> becoming a type of blood cell/platelet R if it becomes a cell other than a blood cell/platelet	[max 1]	
		·		

P		7		Mark Sohama	Syllabus	Danar	
Pä	ige	/		Mark Scheme Cambridge International AS/A Level – May/ June 2016	5yllabus 0700	Paper 21	PLATINUM business academy
				Cambridge international AS/A Level – May/June 2016	9700	21	0777898626
	(c)	(i)	13.	5;		[max]	1]
		(ii)	1 2 3 4 5 6 7 8	low(er) <u>partial pressure</u> of oxygen (at high altitude); A pO ₂ /ppO ₂ less oxygen in, inhaled air/lungs/alveoli; so haemoglobin, is not fully saturated/has lower saturation (wi oxygen) (than at sea level)/lower affinity for oxygen; <i>idea that</i> more red blood cells so, higher concentration of/more haemoglobin; allows, same/similar/enough, volume of oxygen to be transported blood as at sea level; volume of oxygen transported in the blood is less; less oxygen for (aerobic) respiration/lack leads to anaerobic respiration; any consequence, e.g. fatigue, altitude sickness;	ith e orted in the	[max 4	4]
						[Total: 14	4]
6	(a)	flui pho mo pro A o I pa	id osph osaic oteins differ atter	olipids (and proteins), move/AW ; s/glycoproteins, scattered/AW (in the phospholipid bilayer) ; ent types of proteins n unqualified		[;	2]
	(b)	7 n	m;	A any size or range within 6 nm and 10 nm A 7 nanometres		[1]
	(c)	cha car gly cha car gly cha car per atta rec ant	blest satur bohy bligos bohy coca anne rier riphe achn cepto	erol ; rated fatty acids ; A phospholipid tails ydrate chains added to protein(s)/glycoproteins ; saccharides <i>for carbohydrate chains</i> ydrate chains added to lipids/glycolipids ; alyx ; I protein(s)/AW ; A aquaporin(s) ; proteins/AW ; eral/extrinsic, proteins ; hent to, cytoskeleton/microfilaments ; or(s) ; (s) ;		[may /	41
		٨v	I ⁻ ,			ling ,	TJ
						[Total: 7	7]

7