Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH15)
Paper 01:Transition Metals and Organic Nitrogen
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number P64627A
Publications Code WCH15_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (Multiple Choice)

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is $\mathbf{D}\left(\mathrm{VO}_{2}{ }^{+}\right.$and $\left.\mathrm{VO}^{2+}\right)$	
\boldsymbol{A} is not correct because both $C r$ have the oxidation number +6		
\boldsymbol{B} is not correct because both $C r$ have the oxidation number +6		
\boldsymbol{C} is not correct because both V have the oxidation number +5		

Question number	Answer	Mark
$\mathbf{2 (a)}$	The only correct answer is B $(-1.63 \mathrm{~V})$	
A \quad is not correct because the electrode potential for the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ electrode system has been added to the E^{o} cell value instead of being subtracted $\boldsymbol{C} \quad$ is not correct because the value should have a negative sign $\boldsymbol{D} \quad$ is not correct because the value should have a negative sign and the electrode potential for the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ electrode system has been added to the E^{o} cell value instead of being subtracted		

Question number	Answer	Mark
2(b)	The only correct answer is C (platinum and titanium) $\boldsymbol{A} \quad$ is not correct because the $F e^{3+} \mid F e^{2+}$ electrode system requires a platinum electrode $\boldsymbol{B} \quad$ is not correct because the $F e^{3+} \mid F e^{2+}$ electrode system requires a platinum electrode and the $T i^{2+} \mid$ Ti electrode system requires a titanium electrode. $\boldsymbol{D \quad i s ~ n o t ~ c o r r e c t ~ b e c a u s e ~ t h e ~} T i^{2+} \mid$ Ti electrode system requires a titanium electrode.	$\mathbf{1}$

Question number	Answer	Mark
2(c)	The only correct answer is $\mathbf{C}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ and $\left.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\boldsymbol{A} \quad$ is not correct because the cell solution must be $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ with respect to both Fe^{2+} and Fe^{3+} therefore the dilution on mixing and the two Fe^{3+} ions in each iron(III) sulfate must be taken into account \boldsymbol{B} is not correct because the cell solution must be $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ with respect to both Fe^{2+} and Fe^{3+} therefore the dilution on mixing and the two Fe^{3+} ions in each iron(III) sulfate must be taken into account \boldsymbol{D} is not correct because the cell solution must be 1 mol dm^{-3} with respect to both Fe^{2+} and Fe^{3+} therefore the dilution on mixing and the two Fe^{3+} ions in each iron(III) sulfate must be taken into account	1

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is A (electron-pair donor)	$\mathbf{1}$
	B is not correct because ligands do not need to be negatively charged C is not correct because ligands are not electron pair acceptors \boldsymbol{D} is not correct because ligands are not electron pair acceptors and do not need to be negatively charged	

Question number	Answer	Mark
$\mathbf{5}$	The only correct answer is C (d-d transitions are not possible because the d orbitals are fully occupied)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is not correct because the d orbitals in copper(I) can be split $\boldsymbol{B} \quad$ is not correct because no d-d transitions occur $\boldsymbol{D} \quad$ is not correct because the ease of oxidation of an ion does not affect the colour of its complex	

Question number	Answer	Mark
$\mathbf{6}$	The only correct answer is B(type of ligand is bidentate; coordination number of copper(II) is 6)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is not correct because3 is the number of ligands not the coordination number	
$\boldsymbol{C} \quad$ is not correct because the ligand is bidentate and 3 is the number of ligands		
$\boldsymbol{D} \quad$ is not correct because the ligand is bidentate		

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is $\mathbf{D}($ green precipitate and precipitate turns brown $)$	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is not correct because $\mathrm{Fe}(\mathrm{OH})_{2}$ is green (initially)	
$\boldsymbol{B} \quad$ is not correct because the precipitate turns brown on standing		
$\boldsymbol{C} \quad$ is not correct because $\mathrm{Fe}(\mathrm{OH})_{2}$ is green (initially)		

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is A (deprotonation and ligand exchange)	$\mathbf{1}$
$\boldsymbol{B} \quad$ is not correct because the formation of the ammine complex involves ligand exchange		
$\boldsymbol{C} \quad$ is not correct because the formation of the precipitate involves deprotonation of water ligands and the formation of		
the ammine complex involves ligand exchange		
$\boldsymbol{D} \quad$ is not correct because the formation of the precipitate involves deprotonation of water ligands		

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is C (four)	$\mathbf{1}$
$\boldsymbol{A} \quad$ is not correct because this omits two isomers		
$\boldsymbol{B} \quad$ is not correct because in the Kekulé structure1,2-dichlorobenzene has two isomers, one with the carbon atoms		
carrying the chlorines joined by a single bond and the other with them joined by a double bond		
$\boldsymbol{D} \quad$ is not correct because this overlooks the fact that the 1,3 and 1,5 structures are identical		

\hline\end{array}\right.\)

Question number	Answer	Mark	
$\mathbf{1 0}$	The only correct answer is \mathbf{D}	$\mathbf{1}$	

Question number	Answer	Mark
11	The only correct answer is B A is not correct because the $\mathrm{N}---\mathrm{H}-\mathrm{O}$ bond angle should be 180° \boldsymbol{C} is not correct because hydrogen atoms bonded to carbon atoms cannot form hydrogen bonds D is not correct because hydrogen atoms bonded to carbon atoms cannot form hydrogen bonds	1

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 2} & \text { The only correct answer is A(amides) } & \mathbf{1} \\ & \boldsymbol{B} \quad \text { is not correct because amino acids combine to form polypeptides and proteins, which are polyamides } \\ \boldsymbol{C} \quad \text { is not correct because diacyl chlorides combine with diamines to form polyamides } \\ \boldsymbol{D} \quad \text { is not correct because diamines combine with diacyl chlorides to form polyamides }\end{array}\right]$

Question number	Answer	Mark
13(a)	The only correct answer is B A is not correct because this structure is only possible near neutral pH C is not correct because this structure is formed at low pH D is not correct because this structure dominates at neutral pH	1

Question number	Answer	Mark
$\mathbf{1 3 (b)}$	The only correct answer is D (ionic bonds)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is not correct because van der Waals forces are the weakest forces broken	
$\boldsymbol{B} \quad$ is not correct because hydrogen bonds are weaker than ionic bonds		
$\boldsymbol{C} \quad$ is not correct because covalent bonds are not broken when amino acids melt		

Question number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is D (P is due to C-H aldehyde and Q is due to C=O aldehyde)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is not correct because P is too sharp to be an OH stretch and Q is outside the region of $1725-1700 \mathrm{~cm}^{-1}$ for a	
$\boldsymbol{B} \quad$ is not correct because P is too sharp to be an $O H$ stretch		
$\boldsymbol{C} \quad$ is not correct because Q is outside the region of $1725-1700 \mathrm{~cm}^{-1}$ for a carboxylic acid $C=O$ stretch		

Question number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is C (five)	$\mathbf{1}$
	A is not correct because the C atoms in methylcyclohexane are not all equivalent $\boldsymbol{B} \quad$ is not correct because there are five types of C atom in methylcyclohexane not three \boldsymbol{D} is not correct because the C atoms in methylcyclohexane are not all different	

Question number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is A (one singlet, one doublet and a heptet)	$\mathbf{1}$
	B is not correct because this ignores the fact that the proton environments on C1 and C3 are the same \boldsymbol{C} is not correct because this is the number of protons in each environment, not the splitting pattern \boldsymbol{D} is not correct because this ignores all the splitting except the effect of one methyl on the C2 proton	

Question number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is B $\left(8.4 \mathrm{dm}^{3}\right)$	$\mathbf{1}$
$\boldsymbol{A} \quad$ is not correct because the number of oxygen atoms in the compound has been doubled		
$\boldsymbol{C} \quad$ is not correct because the oxygen atoms in the compound have been omitted from the calculation		
\boldsymbol{D} is not correct because the oxygen atoms in the compound have been omitted from the calculation and one oxygen		
molecule has been allowed for the combustion of each pair of hydrogen atoms		

Section B

Question number	Answer		Additional guidance	Mark
18(a)(i)	- selection of the correct half-equations from the table - writing the balanced equation	(1) (1)	[1] $\mathrm{MnO}_{4}^{-}+\mathrm{e}^{-} \rightleftharpoons \mathrm{MnO}_{4}{ }^{2-}$ and [7] $\mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}=\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightleftharpoons 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Allow [1] $\mathrm{MnO}_{4}^{-}+\mathrm{e}^{-} \rightleftharpoons \mathrm{MnO}_{4}{ }^{2-}$ and $[5] \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ which gives $5 \mathrm{MnO}_{4}{ }^{2-}+8 \mathrm{H}^{+} \rightleftharpoons 4 \mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ Accept e for e^{-}in half equations Correct equation scores (2) marks Unbalanced equation with all species correct scores (1) Use of alkaline half-equation to give $3 \mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$ scores (1) mark Ignore state symbols even if incorrect	2

Question number	Answer	Additional guidance	Mark
18(a)(ii)	- selection of appropriate values and insertion in the correct equation (1) - completion of calculation and evaluation of the feasibility of the reaction	$\begin{aligned} & \begin{aligned} E_{\text {cell }}^{\mathrm{o}} & =2.26-0.56 \\ & =(+) 1.70(\mathrm{~V}) \text { and (positive so } \\ & \text { reaction is) feasible } \end{aligned} \\ & \text { Accept (if second equation given) } \\ & \begin{aligned} & E_{\text {cell }}^{\mathrm{o}}=1.51-0.56 \\ &=(+) 0.95(\mathrm{~V}) \text { and (positive so } \\ & \text { reaction is) feasible } \end{aligned} \end{aligned}$ TE on alkaline disproportionation $E^{\circ}{ }_{\text {cell }}=0.59-0.56=(+) 0.03(\mathrm{~V})$ and (positive so reaction is) feasible scores (2) TE on equations used the wrong way round $-1.70 /-0.95(\mathrm{~V})$ and not feasible scores (1) Just (+)1.70 (V) / (+)0.95 (V) scores (1) Do not award a non-disproportionation reaction	2

Question number	Answer	Additional guidance	Mark
18(a)(iii)	For M1 and M2 Either - equation for the reaction - calculation of negative E^{0} cell for the equation Or - clear identification of the appropriate half-equations from the table (1) - use of anticlockwise rule or similar to show that required reaction is not favoured For M3 and M4 - statement that the standard electrode potential values are close - reaction may be shifted in the required direction using concentrated alkali	$\begin{align*} & 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+4 \mathrm{OH}^{-} \rightleftharpoons 3 \mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \tag{1}\\ & \quad \text { Allow } \rightarrow \text { for } \rightleftharpoons \\ & \text { or } E_{\text {cell }}^{\mathrm{o}}=0.56-0.59 \\ & E_{\text {cell }}^{\mathrm{o}}=-0.03(\mathrm{~V}) \tag{1} \end{align*}$ Reverse reaction and $E_{\text {cell }}^{0}=(+) 0.03(\mathrm{~V})$ (1) Equations 1 and 2 Desired reaction moves 'clockwise' so not (thermodynamically) feasible Allow calculation of E° cell as above $(-) 0.03(\mathrm{~V}) / E^{\mathrm{o}}$ cell is a (very) small Or equilibrium has significant concentrations of the reactants and products Allow if $E_{\text {cell }}^{\mathrm{o}}=(+) 0.03(\mathrm{~V})$ in M2 Standalone mark Allow by increasing alkali concentration No TE on incorrect system Ignore just 'by changing concentrations' references to rate and temperature Ignore state symbols even if incorrect	4

Question number	Answer	Additional guidance	Mark
$\mathbf{1 8 (b) (i)}$	- colourless		
	and to pale pink	Allow pale green for colourless	$\mathbf{1}$
		Do not award just 'green' for the start colour Accept pink	

Question number	Answer	Additional guidance	Mark
18(b)(ii)	- calculation of moles of manganate(VII) in $27.35 \mathrm{~cm}^{3}$ - use of 1:5 ratio to calculate $\mathrm{mol} \mathrm{Fe}^{2+}$ in $25.0 \mathrm{~cm}^{3}$ - scaling to $250.0 \mathrm{~cm}^{3}$ to give $\mathrm{mol} \mathrm{Fe}^{2+}$ in $250.0 \mathrm{~cm}^{3}$ - conversion of mol to g of iron - calculation of percentage of iron in the wire and gives the final value to 3 SF	Example of calculation $\begin{align*} & 27.35 \times 0.0195 \times 10^{-3} \tag{1}\\ & =5.33325 \times 10^{-4} / 0.000533325(\mathrm{~mol}) \\ & 5 \times 5.33325 \times 10^{-4} \tag{1}\\ & =2.666625 \times 10^{-3} / 0.002666625(\mathrm{~mol}) \\ & 10 \times 2.666625 \times 10^{-3} \tag{1}\\ & \left.=2.666625 \times 10^{-2} / 0.02666625 \mathrm{~mol}\right) \\ & 2.666625 \times 10^{-2} \times 55.8=1.48798(\mathrm{~g}) \tag{1}\\ & 100 \times 1.48798 / 1.53=97.25338 \\ & =97.3 \% \end{align*}$ If $A_{\mathrm{r}}(\mathrm{Fe})=56$ is used mass $=1.49331(\mathrm{~g})$ $\% \text { iron = 97.6\% }$ Allow $100 \times 1.49 / 1.53=97.4 \%$ Correct answer to 3 SF and some working scores (5) TE at each stage Ignore premature rounding if final answer correct otherwise allow rounding to at least 3SF	5

Question number	Answer	Additional guidance	Mark
18(b)(iii)	An explanation that makes reference to the following - brown suspension formed is manganese(IV) oxide / MnO_{2} - $\mathrm{Mn}(\mathrm{VII})$ to $\mathrm{Mn}(\mathrm{II})$ provides 5 electrons per $\mathrm{MnO}_{4}{ }^{-}$but $\mathrm{Mn}(\mathrm{VII})$ to $\mathrm{Mn}(\mathrm{IV})$ only provides 3 electrons (1) - so more MnO_{4}^{-}is needed / titre is greater	Reference to half-equations 6 \& 7 in the table Allow manganese(IV) oxide / MnO_{2} formed (in alkaline conditions) Accept explanation in terms of oxidation numbers Standalone mark If no other mark is scored, allow one mark for the titration is no longer quantitative as another reaction is (also) taking place.	3

Question number	Answer	Additional guidance	Mark
18(c)(i)	(Balance: $\frac{100 \times 0.005 \times 2}{1.53}=0.65$) - burette: $\frac{100 \times 0.05 \times 2}{27.35}=0.37(\%)$ - pipette: $\frac{100 \times 0.06}{25}=0.24(\%)$ - volumetric flask: $\frac{100 \times 0.3}{250}=0.12(\%)$ $($ Total $=1.38)$	All three percentages correct scores (2) Any two percentages correct scores (1) IGNORE SF	2
Question number	Answer	Additional guidance	Mark
18(c)(ii)	An explanation that makes reference to - total percentage uncertainty is (approximately) 1.38% (1) - because the total percentage uncertainty is much bigger than 0.863 , the answer should be to no more than $2 / 3 \mathrm{SF}(1)$	TE on 18(c)(i) Allow 1.4\% / 2 SF Ignore 'data given to 3SF)	2

Question number	Answer	Additional guidance	Mark
$\mathbf{1 9 (a) (\mathbf { i })}$	• Amine	Do not award ammine	$\mathbf{1}$

Questio numbe	Answer	Additional guidance	Mark
19(a)(ii)	- rewrite the Ideal Gas Equation in terms of mass and molar mass - change the subject of the equation - change volume to m^{3} and temperature to K native method change equation subject (1) $n=p V / R T$ change volume to m^{3} and temperature to K (1) $\begin{aligned} & \mathrm{n}=103000 \times 1.57 \times 10^{-4} / 8.31 \times 288=6.7568 \times 10^{-3}(1) \\ & M_{\mathrm{r}}=0.493 / 6.7568 \times 10^{-3}=72.963=73\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$	Example of calculation $P V=\frac{m}{M_{\mathrm{r}}} R T$ $\begin{equation*} M_{\mathrm{r}}=m R T / P V \tag{1} \end{equation*}$ $157 \mathrm{~cm}^{3}=1.57 \times 10^{-4} / 0.000157 \mathrm{~m}^{3}$ Allow conversion to $\mathrm{kPa} \&$ vol to dm^{3} $15^{\circ} \mathrm{C}=288 \mathrm{~K}$ $\mathrm{M}_{\mathrm{r}}=\frac{0.493 \times 8.31 \times 288}{103000 \times 1.57 \times 10^{-4}}$ $=72.963=73.0 / 73\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Ignore just ' g ' do not award $72.9\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Correct answer with some working scores (4) Correct answer with no working scores zero Ignore premature rounding if final answer correct otherwise allow rounding to at least 3SF Ignore SF except 1 SF	4

Question number	Answer	Additional guidance	Mark
19(b)(i)	- hydrogen chloride $/ \mathrm{HCl}$	Allow hydrochloric acid $/ \mathrm{HCl}(\mathrm{aq})$	$\mathbf{1}$

Question number	Answer	Additional guidance	Mark
19(b)(ii)	\bullet N-substituted amide / -CONHR	Accept amide / acid amide / -CONH $/$ / -CONH- If name and formula are given, both must be correct	$\mathbf{1}$

Question	Answer	Additional guidance					Mark
19(b)(iii)	- conversion of percentages by mass into moles - evaluation of moles and division by the smallest value to give a ratio - conversion of ratio into an empirical formula	Example of calculation					3
			C	H	N	O	
		\%	62.6	11.3	12.2	13.9	
		mol	$\begin{aligned} & 62.6 / 12 \\ & (=5.2167) \end{aligned}$	$\begin{aligned} & 11.3 / 1 \\ & (=11.3) \end{aligned}$	$\begin{aligned} & 12.2 / 14 \\ & (= \\ & 0.8714) \end{aligned}$	$\begin{aligned} & 13.9 / 16 \\ & =0.86875 \end{aligned}$	
		Ratio	6.00	13.01	1.00	1.00	
		$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}$ Correct Ignore	answer with F except 1	no work FF in mol	g scores calculatio		

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & * 19(c) \\ & \text { cont } \end{aligned}$	Indicative points - IP1 three peaks indicates three proton environments - IP2 no splitting shows no proton environment is adjacent to another - IP3 chemical shift $=7(\mathrm{ppm})$ indicates $\mathrm{N}-\mathbf{H}$ proton - IP4 nine protons in one environment and no coupling indicates $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ - - IP5 chemical shift $=2(\mathrm{ppm})$ indicates $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ protons - IP6 structure is	Marks may be awarded for IPs annotated on the NMR or on the structure Allow three types of proton / hydrogen Allow 'peaks have one split' Accept $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ indicated by amide responsible for the peak at 2 (ppm) Allow $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ indicated by use of ethanoyl chloride Allow displayed, structural or skeletal formulae or any combination of these e.g.	6

Question number	Answer	Additional guidance	Mark
19(d)		Allow displayed, structural or skeletal formulae or any combination of these e.g. Allow TE on the amide in 19(c)providing \mathbf{X} is shown as an amine	1

Question number	Answer	Additional guidance	Mark
20(a)(i)	- calculation of the difference between the enthalpies of combustion of cyclohexene and cyclohexa-1,4-diene - subtraction of the calculated difference from the enthalpy of combustion of cyclohexa-1,4-diene to give the enthalpy of combustion of cyclohexa-1,3,5-triene	Example of calculation $\begin{equation*} -3752-(-3584)=-168\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Ignore sign of 168 $-3584-(-168)=-3416\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE on numerical errors in M1 Correct answer with some working scores (2)	2

Question number	Answer	Additional guidance	Mark
20(a)(ii)	An explanation that makes reference to - calculation of the difference between the enthalpies of combustion of benzene and cyclohexa-1,3,5-triene - benzene more stable than cyclohexa-1,3,5-triene by $149\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ - (benzene more stable)because the π electrons in benzene are delocalised	$\begin{equation*} -3416-(-3267)=-149\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ TE on value calculated in (a)(i) Ignore omission of negative sign Allow enthalpy of combustion of benzene less negative / less exothermic than that of cyclohexa-1,3,5-triene and so benzene is more stable If M1 is scored Allow just 'benzene more stable than cyclohexa-1,3,5-triene' Allow benzene has delocalisation energy / resonance stability /bonds delocalised standalone mark Do not award if the enthalpy of combustion of benzene is more negative than that calculated for cyclohexa-1,3,5-triene	3

Question number	Answer	Additional guidance	Mark
20(b)	An answer that makes reference to four of the following: Similarities - both reactions involve electrophilic attack - both reactions form a carbocation Differences - reaction with benzene is substitution (because the stable benzene ring is retained / restored) - reaction with cyclohexene is addition (because σ bonds stronger than π bonds) - reaction with benzene requires a catalyst (and heat) and whereas reaction with cyclohexene occurs under normal laboratory conditions	This may be shown using a labelled diagram Accept $2 \mathrm{C}-\mathrm{H}$ and $1 \mathrm{C}-\mathrm{C}$ stronger than $\mathrm{C}=\mathrm{C}$ and $\mathrm{Br}-\mathrm{Br}$ Allow cyclohexene reaction does not require catalyst / heat Allow cyclohexene reacts with bromine water Do not award if conditions are incorrect e.g. cyclohexene reaction requires heat	4

Question number	Answer	Additional guidance	Mark
20(c)(i)	- 2,4,6-tribromophenol OR	If name and formula are given both must be correct Accept Kekulé structure Allow Correct structure and tribromophenol Ignore punctuation errors in the name such as omission of commas or hyphen and inclusion of spaces	1

Question number	Answer	Additional guidance	Mark
$\mathbf{2 0 (c) (i i)}$	An explanation that makes reference to - lone pair of electrons on the oxygen - overlap / interact with the π electrons of the ring and increasing its electron density / becomes more susceptible to electrophilic attack	(1)	Allow lone pair of electrons on the OH Allow (lone pair) donated to the π electrons Ignore ingreasing the reactivity of the ring Ignore reference to phenol being a nucleophile

Section C

Question number	Answer	Additional guidance	Mark
21(a)	An explanation that makes reference to the following points - the electronic structure of $\mathrm{Fe}(\mathrm{II})$ is $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ and $\mathrm{Fe}(\mathrm{III})$ is $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ - $3 \mathrm{~d}^{5}$ is more stable than $3 \mathrm{~d}^{6}$ because the $3 \mathrm{~d}^{6}$ subshell has two paired electrons which results in repulsion / pairing of electrons is (energetically) less favourable	Ar may be given as $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Allow just Fe (II) is $3 \mathrm{~d}^{6}$ and Fe (III) is $3 \mathrm{~d}^{5}$ Allow half-filled subshell is more stable Allow 1 electron in each orbital is stable If no other mark is scored, just ${ }^{ } \mathrm{Fe}(\mathrm{III})$ has a half-filled 3d subshell scores (1) Allow use of 'orbital' or '(quantum) shell' for subshell	2
Question number	Answer	Additional guidance	Mark
21(b)(i)	- $\mathrm{Fe}^{2+}(\mathrm{g}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{g})+\mathrm{e}\left({ }^{-}\right)$	Allow $\mathrm{Fe}^{2+}(\mathrm{g})-\mathrm{e}\left({ }^{-}\right) \rightarrow \mathrm{Fe}^{3+}(\mathrm{g})$ Accept $\mathrm{e}^{(-)}(\mathrm{g})$	1

Question number	Answer	Additional guidance	Mark
21(b)(ii)	An answer that makes reference to the following points M1 - conversion of iron(II) $/ \mathrm{Fe}^{2+}$ to iron(III) $/ \mathrm{Fe}^{3+}$ requires $2958 \mathrm{~kJ} \mathrm{~mol}^{-1}$ OR conversion of iron(II) $/ \mathrm{Fe}^{2+}$ to iron(III) $/ \mathrm{Fe}^{3+}$ requires (large amounts of) energy OR conversion of iron(II) $/ \mathrm{Fe}^{2+}$ to iron(III) $/ \mathrm{Fe}^{3+}$ is (very) endothermic M2 - this energy is recovered by hydration (which is exothermic) M3 - the hydration of iron(III) $/ \mathrm{Fe}^{3+}$ is more exothermic than iron(II) $/ \mathrm{Fe}^{2+}$ and because the iron(III) has a greater charge	These marks may be awarded if a labelled Hess cycle is used Accept 'charge density' for charge Ignore smaller ionic radius	3

Question number	Answer	Additional guidance	Mark
21(c)	An answer that makes reference to the following points - the energy difference between the two sets of (3)d orbitals is different - because the ligands / ions are different - so radiation / light / quanta absorbed from different regions of the visible spectrum	Allow the different energy levels of the (3)d subshell Do not award orbital for orbitals Do not award (quantum) shell for subshell Ignore just 'complexes are different' Accept different radiation / light frequencies or different radiation / light wavelengths transmitted / reflected Do not award radiation / light emitted	3

Question number	Answer	Additional guidance	Mark
21(d)(i)	- conversion of $\%$ transmittance into $\log (\%$ transmittance $)$ - use of the graph to obtain a value for the concentration of iron in $\mathrm{mg} \mathrm{dm}^{-3}$ - calculation of the mass of iron in $500 \mathrm{~cm}^{3}$ of iron solution which is also the mass of iron in 20 g of sodium carbonate $\begin{aligned} & \text { OR } \\ & \text { M3 Concentration of } \mathrm{Na}_{2} \mathrm{CO}_{3}=20 \times 1000 / 500 \div 1000 \\ &=40000 \mathrm{~m} \mathrm{~g} \mathrm{dm}^{-3} \end{aligned}$	Example of calculation $\log (39.8)=1.60$ $[\mathrm{Fe}]=0.44\left(\mathrm{mg} \mathrm{dm}^{-3}\right)($ allow $0.42-0.46)$ $0.5 \times 0.44=0.22 \mathrm{mg}\left(\right.$ in $\left.500 \mathrm{~cm}^{3} / 20 \mathrm{~g}\right)$ Accept $0.21-0.23(\mathrm{mg})$ OR $0.00022 / 2.2 \times 10^{-4} \mathrm{~g}$ (in $500 \mathrm{~cm}^{3} / 20 \mathrm{~g}$) $\left(10^{6} \times 2.2 \times 10^{-4}\right) \div 20=11 \mathrm{ppm}$ (So Fe is within the stated specification) TE at each stage Correct answer with some working scores	4

Question number	Answer	Additional guidance	Mark
21(d)(ii)	- (thioglycolic acid is a) bidentate (ligand) - because there are three ligands per complex ion and the coordination number of Fe^{3+} is (usually) six OR can form dative bonds using the lone pairs on the SH and the COOH groups	Allow three ligands replace six (monodentate) water ligands Accept S and O atoms Ignore just 'forms two dative covalent bonds' Do not award two dative covalent bonds from COOH	2
Question number	Answer	Additional guidance	Mark
21(e)(i)	- catalyst and reactants are in the same phase	Accept 'same state' Allow all species are in aqueous solution Allow 'It' is in the same phase / state as the reactants Ignore reference to producta	1

Question number	Answer	Additional guidance	Mark	
21(e)(ii)		(1)	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Fe}^{3+}$	
	\bullet equation for oxidation of iron(II) by peroxodisulfate	(1)	$2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{I}_{2}+2 \mathrm{Fe}^{2+}$	
		equation for oxidation of iodide ions by iron(III)	Allow multiples $/$ equations in any order Ignore state symbols even if incorrect Two unbalanced equations with all species correct scores (1)	$\mathbf{2}$

Question number	Answer	Additional guidance	Mark
21(e)(iii)	uncatalysed reaction involves two negatively charged ions reacting and catalysed steps involve oppositely charged ions reacting (which is kinetically more favourable / lowers the activation energy)	Ignore general definitions of catalysts	$\mathbf{1}$

Question number	Answer	Additional guidance	Mark		
$\mathbf{2 1 (f)}$	- chloride ions are large so steric hindrance is too great for six ligands to				
coordinate around the central ion				\quad	Allow just 'chloride ions are large'
:---					
Allow chlorine ligands are (too) large					
Do not award chlorine atoms					
Ignore reference to repulsion between					
negative chloride ions	\quad				
:---					

