

Cambridge O Level

PHYSICS

Paper 2 Theory MARK SCHEME Maximum Mark: 75 5054/22 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question •
- the specific skills defined in the mark scheme or in the generic level descriptors for the question .
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do •
- marks are not deducted for errors •
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the • question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards *n*.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

6 <u>Calculation specific guidance</u>

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 <u>Guidance for chemical equations</u>

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1(a)	(distance =) area (under graph) or 77 × 56 or ½ × 77 × 70 or 4300 or 2700 or ½ × 77 × (56 + 126)	C1
	77 × 56 + ($\frac{1}{2}$ × 77 × 70) or 4300 + 2700 or $\frac{1}{2}$ × 77 × (56 + 126)	C1
	7000 m or 7.0 × 10 ³ m or 7.0 km	A1
1(b)(i)	$(a =) \Delta v / \Delta t \text{ or } 77 / 70 \text{ (etc.)}$	C1
	1.1 m/s ²	A1
1(b)(ii)	$(F =) ma \text{ or } 3.8 \times 10^5 \times 1.1$	C1
	$4.2 \times 10^5 \mathrm{N}$	A1

Question	Answer	Marks
2(a)	$(\rho =) m / V \text{ or } (\rho =) m / h A \text{ or } 2.9 \times 10^4 / 3.6 \text{ or } 2.9 \times 10^4 / (2.0 \times 1.8)$	C1
	$8.1\times10^3kg/m^3$	A1
2(b)(i)	(g.p.e. =) $mg \Delta h \text{ or } 2.9 \times 10^4 \times 10 \times 0.80$	C1
	$2.3 \times 10^5 J$	A1
2(b)(ii)	k.e. $/\frac{1}{2}mv^2 = g.p.e. / mg\Delta h/2.3 \times 10^5 \text{ or } (v =) \sqrt{2gDh} \text{ or } \sqrt{2 \times 10 \times 0.80}$	C1
	$(v =) \sqrt{2\text{gDh}} \text{ or } \sqrt{2 \times 10 \times 0.80}$	C1
	4.0 m/s	A1

Question	Answer	Marks
3(a)	chemical potential energy and no other energy	B1
3(b)(i)	radiation or infrared mentioned	B1
	radiation and infrared (travel to the man)	B1
	energy / infrared / radiation <u>absorbed</u> by the man / pullover or travels in straight line or travels at the speed of light or increases (man's) internal energy	B1
3(b)(ii)	(shiny surface) reflects radiation (to man)	B1
	less (thermal) energy escapes or more (thermal) energy reaches / absorbed by man	B1
3(b)(iii)	EITHER black (surface) is good absorber / poor reflector of infrared radiation	B1
	more (thermal) energy absorbed or more thermal energy transferred to man	B1
	OR trapped air and reduced convection / air poor conductor / air is a good insulator	(B1)
	less (thermal) energy lost	(B1)

Question	Answer					
4(a)	equipment e.g. (evacuable) container and (suspended electric) bell / source of sound and (air) <u>pump</u>					
	action	e.g.	ringing / sound (produced) / sound heard and evacuate air / vacuum (produced)	B1		
	observation	e.g.	transmission / hearing of sound ceases / no sound	B1		

Question	Answer	Marks
4(b)	(they) vibrate	M1
	(vibration) parallel to / in the direction of propagation / of energy travel	A1
4(c)	(point where) molecules are further apart (than average) or (point where) pressure / density is lower (than average)	B1
4(d)	$(\lambda =) v/f$ or $1500/140000$	C1
	1.1 × 10 ⁻² m or 1.1 cm or 11 mm	A1

Question	Answer	Marks			
5(a)	energy/work done per unit charge or $\frac{\text{energy}}{\text{charge}}$ or $\frac{\text{work done}}{\text{charge}}$				
	property of a source / cell / battery / power supply or energy used driving charge around a (complete) circuit or energy transferred to electrical energy	B1			
5(b)	it lasts for a longer time or more (electrical) energy available or power supply still functions if one cell fails / runs flat or can replace one cell without stopping circuit / stopping current				
5(c)(i)	resistance (of thermistor / circuit) decreases c.a.o.				
	current change or voltage change across thermistor matching the change in the resistance of the resistor				
	reading of voltmeter increases c.a.o.				
5(c)(ii)	$(V_1 =) V_0 \times R_1 / R_0$ or $1.5 \times 4000 / (4000 + 8000)$ or $1.5 \times 4000 / 12\ 000$ or $I = V / R$ or $1.5 \times 8000 / (4000 + 8000)$ or $I = 1.5 / 12\ 000$ or $0.125\ mA$	C1			
	0.50 V	A1			

Question	Answer	Marks
6(a)	magnetic field / flux mentioned	B1
	changing / alternating (magnetic) field	B1
	voltage <u>induced</u> (in secondary coil)	B1
6(b)(i)	$(V_{\rm S} =) V_{\rm P} \times N_{\rm S} / N_{\rm P} \text{ or } 240 \times 350 / 5600$	C1
	15 V	A1
6(b)(ii)	(<i>I</i> =) <i>P</i> /V or 90/15	C1
	6.0 A	A1

Question	Answer	Marks				
7(a)	(surface) water contracts (as it cools) or molecules (at surface) become closer	B1				
	surface / cold) water / its density increases or density greater than rest of water					
	surface / cold / dense water sinks or deeper / warm / less dense water rises / moves upwards					
7(b)(i)	conduction and no other mechanism of thermal transfer	B1				
7(b)(ii)	it is a good conductor (of thermal energy)	B1				
7(c)(i)	0.75 or 83 seen or 100 – 17 seen	C1				
	$(E =) mc \Delta T \text{ or } 0.75 \times 4200 \times 83 \text{ or } 750 \times 4200 \times 83 \text{ or } 2.6 \times 10^8$	C1				
	$2.6 \times 10^5 \mathrm{J}$	A1				

Question	Answer	Marks
7(c)(ii)	occurs (only) at a specific temperature / boiling point	B1
	occurs throughout the liquid or produces bubbles or does not produce cooling or does not depend on draught / surface area	B1
7(c)(iii)	does work against the forces / breaks the bonds (between the molecules) or increases the potential energy (of the molecules)	B1
	so that / as the molecules move apart / separate (and become gas molecules)	B1
7(c)(iv)	$(m =) E/l_v$ or Pt/l_v or 10×60 or 600 or 7.8×10^5	C1
	$1300 \times 60 \times 10/2.3 \times 10^{6}$ or $1300 \times 10/2.3 \times 10^{6}$	C1
	0.34 kg	A1

Question	Answer	Marks
8(a)	electrons move from the cloth / to the rod	B1
	cloth becomes positively charged	B1
8(b)	mention of free / mobile / delocalised / sea of electrons	B1
	(free) electrons present in metal and not present in plastic	B1
8(c)(i)	positive signs at top (half) of sphere and negative signs at the bottom	B1
	equal number of each and number ≤ 7	B1
8(c)(ii)	negative charges / electrons flow to earth (and positive charges do not move	B1
8(c)(iii)	(only) top of sphere is / stays positive	B1
	bottom of sphere is uncharged / neutral	B1

Question	Answer	Marks			
8(c)(iv)	charges repel each other or as earth wire is disconnected, charge distribution does not change				
	(positive) charge is spread (uniformly) over (the surface of) the sphere	B1			
8(d)(i)	(region of space) where an (electrically) charged particle / charge experiences an (extra) force	B1			
8(d)(ii)	at least five straight lines outside Y and none curved and perpendicular to the surface	B1			
	at least one arrowhead pointing inwards and none wrong	B1			
	field lines uniformly spaced at surface of sphere and no crossing / touching anywhere	B1			

Question	Answer					
9(a)		yes	no	it is not possible to tell		B1
	it emits an α -particle		√			
	it emits a β -particle	\checkmark			}	
		yes	no	it is not possible to tell		B1
	it emits a γ-ray			√	_	
9(b)(i)	(both have) 91 protons / equal numbers of prot	ons (in nucle	eus)			B1
9(b)(ii)	(they have) different numbers of neutrons (in n	ucleus) / nuc	cleons			B1

Question	Answer	Marks
9(c)(i)	(count that is) always present or due to the environment/surroundings or not deliberately introduced or not being tested	B1
	any two from: rock sources (e.g. benches, building materials, human body, Earth crust) air sources (e.g. radon)	B2
	cosmic sources (e.g. Sun, space)	
9(c)(ii)	use tongs / tweezers / forceps or wear lead(-lined) clothing / lead(-lined) gloves or wear goggles or reduce time of exposure or keep distance of separation large	B1
9(c)(iii)	(radioactive) emission is a random process / occurs at random intervals	B1
	measurements fluctuate (about an average value)	B1
9(c)(iv)	(coordinates of) two points from curve, e.g. (0, 58) and (70, 29)	C1
	(coordinates of) two points from curve and at least two half-lives apart, e.g. (0, 58) and (138, 14.5) or 64.0 $\leq \tau \leq$ 74.0	C1
	66.0 s ≤ τ ≤ 73.5 s	A1
9(c)(v)	(large half-life because of) slow rate of decay	B1
	radiation / count rate due to $^{234}_{92}$ U imperceptible / very much less than that of $^{234}_{91}$ Pa or (nearly) all of measured radiation / count rate due to $^{234}_{91}$ Pa	B1