

# **Cambridge O Level**

MATHEMATICS (SYLLABUS D)

Paper 1 MARK SCHEME Maximum Mark: 80 4024/11 October/November 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

#### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

### Abbreviations

| cao  | correct answer only        |
|------|----------------------------|
| dep  | dependent                  |
| FT   | follow through after error |
| isw  | ignore subsequent working  |
| oe   | or equivalent              |
| SC   | Special Case               |
| nfww | not from wrong working     |
| soi  | seen or implied            |
|      | 1                          |

| Question | Answer                                        | Marks | Partial Marks                                                                                            |
|----------|-----------------------------------------------|-------|----------------------------------------------------------------------------------------------------------|
| 1(a)     | 8                                             | 1     |                                                                                                          |
| 1(b)     | 12                                            | 1     |                                                                                                          |
| 2        | $0.1, \ \frac{3}{25}, \ 13\%, \ \frac{1}{5}$  | 2     | <b>B1</b> for three correct when one is covered up or for correct order reversed                         |
| 3(a)     | 8                                             | 1     |                                                                                                          |
| 3(b)     | 14                                            | 1     |                                                                                                          |
| 4        | 7.8[0]                                        | 2     | <b>B1</b> for digits 78<br>or <b>M1</b> for their answer converted to dollars<br>or for $12 \times 0.65$ |
| 5(a)     | 4                                             | 1     |                                                                                                          |
| 5(b)     | $\frac{5}{20}$ oe fraction                    | 1     |                                                                                                          |
| 6(a)     | 70                                            | 1     |                                                                                                          |
| 6(b)     | 110                                           | 1     |                                                                                                          |
| 7        | 50, 3 and 7 seen <b>and</b> final answer 5    | 2     | <b>B1</b> for two of 50, 3, 7 seen                                                                       |
| 8(a)     | 7.8                                           | 1     |                                                                                                          |
| 8(b)     | 30 000                                        | 1     |                                                                                                          |
| 9(a)     | Positive                                      | 1     |                                                                                                          |
| 9(b)     | Ruled line of best fit                        | B1    |                                                                                                          |
|          | Reading their straight line of best fit at 50 | B1    | Dependent on positive gradient                                                                           |
| 10(a)    | 30                                            | 2     | <b>M1</b> for 360 – (150 + 100 + 45 + 35) oe                                                             |
| 10(b)    | 144                                           | 2     | <b>M1</b> for $\frac{180 \times (10 - 2)}{[10]}$ oe                                                      |
|          |                                               |       | or for $[180 -] \frac{360}{10}$ oe                                                                       |
| 11(a)    | 19                                            | 1     |                                                                                                          |
| 11(b)    | 25                                            | 2     | <b>B1</b> for $5^2$ leading to final answer                                                              |
|          |                                               |       | or <b>M1</b> for $\frac{1}{5} \times 5 \times 5 \times 5$ oe or better                                   |

| Question | Answer                                                                 | Marks | Partial Marks                                                                                                                                                                                                                                                                             |
|----------|------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12(a)    | 1.76 to 1.84                                                           | 2     | <b>B1</b> for line measured as 8.8 [cm] to 9.2 [cm]<br>or <b>M1</b> for <i>their</i> distance in cm written and<br><i>their</i> answer is 0.2 × this value<br>If 0 scored, <b>SC1</b> for answers 176 000 to<br>184 000                                                                   |
| 12(b)    | Acceptable bisector of <i>AB</i> with correct arcs                     | 2     | <b>B1</b> for acceptable bisector with no/incorrect arcs                                                                                                                                                                                                                                  |
| 12(c)    | S marked on a bearing of $105^{\circ}$ from A and<br>on their bisector |       | Dependent on <i>their</i> attempt at bisector crossing <i>AB</i>                                                                                                                                                                                                                          |
| 13       | $\frac{24}{25}$                                                        | 2     | <b>M1</b> for $\frac{8}{5} \times \frac{3}{5}$ or $\frac{24}{15} \div \frac{25}{15}$                                                                                                                                                                                                      |
| 14(a)    | $2 \times 2 \times 3 \times 3$ or $2^2 \times 3^2$                     | 2     | <b>B1</b> for 2, 2, 3, 3 not as product<br>or <b>M1</b> for any two stages correct in factor<br>tree or ladder method                                                                                                                                                                     |
| 14(b)    | 1154                                                                   | 3     | B2 for 144 or 2 h 24m<br>or M1 for $2^4 \times 3$ oe or $\frac{36 \times 48}{12}$ oe<br>OR<br>M2 for listing times/multiples of both 36<br>and 48 to at least 11 54 or 144<br>or M1 for at least 72, 108 and 96, 144<br>listed<br>or for at least 10.06, 10.42 and 10.18, 11.06<br>listed |
| 15(a)    | 71                                                                     | 1     |                                                                                                                                                                                                                                                                                           |
| 15(b)    | 142                                                                    | 2     | M1 for angle $ABO = 90$ or angle $ACO = 90$<br>soi<br>If 0 scored, SC1 for answer equals<br>$2 \times their$ (a)                                                                                                                                                                          |
| 15(c)    | 71                                                                     | 1     | <b>FT</b> their ( <b>b</b> ) $\div 2$                                                                                                                                                                                                                                                     |
| 16       |                                                                        | 4     | <b>B1</b> for $x = 1$ and $x = 3$ correctly drawn<br><b>B1</b> for $y = 2$ and $y = 3$ correctly drawn<br><b>B1</b> for $y = \frac{x}{2} + 1$ correctly drawn                                                                                                                             |

| Question       | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks | Partial Marks                                                                                                                                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17             | $\frac{5}{2}$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2     | <b>B1</b> for $k = \frac{1}{2}$ if $y = k\sqrt{x}$ used<br>or <b>M1</b> for $2 \times \sqrt{25} = y \times \sqrt{16}$ oe<br>or <b>M1FT</b> for $y = their k \times \sqrt{25}$                                                            |
| 18(a)          | $\mathcal{C}$ | 3     | <b>B2</b> for Venn diagram with 6 or 7 correct values<br>or <b>B1</b> for Venn diagram with 4 or 5 correct values or for answer 2 in intersection                                                                                        |
| 18(b)          | $G \cap H \cap F'$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |                                                                                                                                                                                                                                          |
| 19(a)          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |                                                                                                                                                                                                                                          |
| 19(b)<br>20(a) | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2     | M2 for a correct equation in <i>T</i> ,<br>e.g. $\frac{20(T + T - 10)}{2} = 700$<br>or B2 for length of rectangle = 30 nfww<br>or M1 for a correct method to find a<br>relevant area under<br>the graph e.g. $\frac{10 \times 20}{2}$ oe |
| _ ( ( )        | $-\frac{1}{10}\begin{pmatrix} 3 & 1\\ -4 & -2 \end{pmatrix}$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | <b>B1</b> for $k \begin{pmatrix} 3 & -1 \\ -4 & -2 \end{pmatrix}$ oe<br>or for $-\frac{1}{10} \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$                                                                              |
| 20(b)          | $\begin{pmatrix} -7 & -3 \\ 9 & 11 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2     | <b>B1</b> for two or three correct elements                                                                                                                                                                                              |
| 21(a)          | 3(2a-3) final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |                                                                                                                                                                                                                                          |
| 21(b)          | (2b+5)(2b-5) final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |                                                                                                                                                                                                                                          |
| 21(c)          | $\frac{2c}{2c+3}$ final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3     | <b>B1</b> for $2c(c-4)$ seen<br><b>B1</b> for $(2c+3)(c-4)$ seen                                                                                                                                                                         |
| 22(a)          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |                                                                                                                                                                                                                                          |
| 22(b)          | 4(x-3) or $4x-12$ final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2     | <b>B1</b> for $x = \frac{y}{4} + 3$ or $y - 3 = \frac{x}{4}$ or $4y = x$<br>+ 12 or better in each case                                                                                                                                  |

| Question | Answer                                              | Marks | Partial Marks                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22(c)    | $-\frac{20}{7}$ oe                                  | 3     | <b>B1</b> for $\frac{p}{4} + 3 = 2(p+5-1)$ oe                                                                                                                                                                                                                                                                                                             |
|          | ,                                                   |       | <b>M1</b> for expansion of brackets and isolation of terms in $p$                                                                                                                                                                                                                                                                                         |
| 23(a)    | $\mathbf{c} - \mathbf{a}$                           | 1     |                                                                                                                                                                                                                                                                                                                                                           |
| 23(b)    | $\frac{1}{2}a + \frac{1}{2}c$ oe simplified vector  | 2     | M1 for a correct route along the lines of<br>the diagram<br>or B1FT for $\overrightarrow{AX} = \frac{1}{2}(c-a)$ or                                                                                                                                                                                                                                       |
|          |                                                     |       | $\overrightarrow{CX} = \frac{1}{2}(a-c)$                                                                                                                                                                                                                                                                                                                  |
| 23(c)    | $-\frac{1}{2}a - \frac{1}{6}c$ oe simplified vector | 2     | M1 for a correct route for $\overrightarrow{YX}$ along the<br>lines of the diagram but can include correct<br>$\overrightarrow{OX}$<br>or B1 for $\overrightarrow{AY} = \frac{2}{3}c$ or $\overrightarrow{BY} = -\frac{1}{3}c$                                                                                                                            |
| 24       | $\frac{1}{5}$ oe                                    | 4     | M2 for elimination of fractions or correct<br>use of common denominator in an<br>equation, accept LHS as two fractions<br>or M1 for $3x(x-1) - 2(x+1)$<br>or denominator $(x+1)(x-1)$ soi<br>or $\frac{3x}{x+1} = \frac{3(x-1)+2}{x-1}$<br>or $\frac{3x-3(x+1)}{x+1} = \frac{2}{x-1}$<br>AND<br>M1 for expansion of all brackets in<br>clearing fractions |