Cambridge O Level

CENTRE NUMBER

MATHEMATICS (SYLLABUS D)

You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER

1 Work out
(a) $1234.4 \div 8$
(b) $\frac{3}{7}$ of 56

2 (a) Write down the fraction of this 3×3 square that is shaded.

(b) Evaluate 0.5^{2}.

3 (a)

The diagram shows four straight lines meeting at a point.
Work out the value of x.

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

(b) $A B C$ is a straight line and $B C D$ is an equilateral triangle.

NOT TO
SCALE

Work out the value of y.

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

4 (a) Benjamin's age is t years.
(i) Maryam is 5 years younger than Benjamin.

Write an expression for Maryam's age in terms of t.
(ii) Colin's age is twice Benjamin's age.

Write an expression for Colin's age in terms of t.
(b) Given that $a=3$ and $b=-2$, evaluate $5 a-2 b$.

5 (a) Insert one set of brackets to make the calculation correct.

$$
3+5 \times 2-7=9
$$

(b) Insert,+- and \times to make the calculation correct.

$$
\begin{array}{llll}
3 & 5 & 2 & 7=20 \tag{1}
\end{array}
$$

6 (a) Complete the pattern so that $A B$ is the only line of symmetry.

(b) A hexagon has rotational symmetry of order 6 .

The perimeter of the hexagon is 30 cm .
Draw a sketch of the hexagon labelling the lengths of the sides.

7 (a) Here are five temperatures in ${ }^{\circ} \mathrm{C}$.

$$
\begin{array}{lllll}
-18 & -21 & -2 & 17 & -10
\end{array}
$$

Write these temperatures in order from coldest to hottest.
coldest
(b) Work out the temperature that is $5^{\circ} \mathrm{C}$ colder than $-18^{\circ} \mathrm{C}$.

8 A rope is cut into three pieces with lengths in the ratio $3: 5: 4$. The length of the shortest piece of rope is 180 cm .
(a) Find the length, in cm , of the longest piece of rope.
(b) Find the total length of rope.

Give your answer in metres.

9 The diagram shows triangles A and B.

Describe fully the single transformation that maps triangle A onto triangle B.
\qquad

10 (a) Work out $1 \frac{1}{3} \times \frac{8}{9}$.
Give your answer as a mixed number in its simplest form.
(b) Kate has a bunch of grapes.

She ate $\frac{1}{4}$ of the grapes in the morning.
She ate $\frac{2}{3}$ of the grapes in the afternoon.

Work out the fraction of the grapes that she has not eaten.

11 Solve the inequality $x-5>3 x+7$.

12 (a) Ali keeps a record of the computer games he plays.
Out of the first 6 games, Ali wins 4.
Out of the first 20 games, Ali wins 13.
Use these results to find the best estimate for the probability that Ali will not win the next computer game he plays.
(b) A spinner is spun n times.

The spinner lands on red 14 times.
The relative frequency of the spinner landing on red is 0.2 .
Find the value of n.

$$
n=
$$

13 (a) The bearing of Mingfield from Lenton is 156°.
Calculate the bearing of Lenton from Mingfield.
\qquad
(b) On a map, the distance between Lenton and Mingfield is 4.5 cm .

The actual distance between Lenton and Mingfield is 9 km .
Find the scale of the map in the form $1: n$.

$$
1:
$$

14 Expand and simplify.
(a) $5(3 x-2)-3(2 x-3)$
(b) $(2 x+3)(x-7)$

15 These are the first four terms of a sequence.

$$
\begin{array}{llll}
1 & 7 & 13 & 19
\end{array}
$$

Find an expression, in terms of n, for the nth term of this sequence.

NOT TO
SCALE
$O M N$ is a sector of a circle, centre O.
$O N=20 \mathrm{~cm}$ and the area of the sector is $30 \pi \mathrm{~cm}^{2}$.
Find the value of x.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

17 The mass of the planet Saturn is $5.7 \times 10^{26} \mathrm{~kg}$. The mass of the planet Venus is $4.9 \times 10^{24} \mathrm{~kg}$.

Calculate the difference in mass between Saturn and Venus. Give your answer in standard form.

18

$$
y=\sqrt{\frac{x+2}{3}}
$$

Rearrange the formula to make x the subject.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

NOT TO
SCALE
A and B are points on the circumference of a circle, centre O.
$T A$ and $T B$ are tangents to the circle.
Show that triangles $O B T$ and $O A T$ are congruent.
Give a reason for each statement you make.
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathrm{f}(x)=10+7 x
$$

Find $\mathrm{f}^{-1}(x)$.

$$
\begin{equation*}
\mathrm{f}^{-1}(x)= \tag{2}
\end{equation*}
$$

21 The diagram shows two rectangles.

Rectangle $A B C D$ is mathematically similar to rectangle $P Q R S$.
$A B=12 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $P Q=8 \mathrm{~cm}$.
Find the shaded area.

22 Factorise.
(a) $7 y+2 x y-6 x-21$
(b) $3 a^{2}-12 b^{2}$

23 The attendance at a cricket match is 36000 correct to the nearest thousand.
(a) Write down the minimum number of people at the cricket match.
\qquad
(b) The number of males attending the match is 21000 correct to the nearest five hundred.

Find the maximum number of females that could be attending the cricket match.

24100 batteries are tested to see how long they last. The table shows the results.

Number of hours (t)	$10<t \leqslant 15$	$15<t \leqslant 21$	$21<t \leqslant 30$	$30<t \leqslant 50$
Frequency	10	24	36	30

Complete the histogram to show this information.

$25\left(a x^{b}\right)^{3}=27 x^{4}$
Find the value of a and the value of b.

$$
\begin{aligned}
& a=. ~
\end{aligned}
$$

$26 \quad A$ is the point $(-2,3)$ and B is the point $(4,7)$.
(a) Find the coordinates of the midpoint of $A B$.
\qquad
(b) Line l is the locus of points that are equidistant from A and B. Find the equation of line l.

NOT TO
SCALE
$O A B C$ is a parallelogram.
$\overrightarrow{O A}=2 \mathbf{a}$ and $\overrightarrow{O C}=3 \mathbf{c}$.
M is the midpoint of $B C$.
T is the point on $O B$ such that $O T: T B=2: 1$.
(a) Find $\overrightarrow{O B}$ in terms of \mathbf{a} and \mathbf{c}.

$$
\overrightarrow{O B}=
$$

(b) Express, as simply as possible, in terms of \mathbf{a} and \mathbf{c}
(i) $\overrightarrow{A M}$

$$
\overrightarrow{A M}=
$$

(ii) $\overrightarrow{A T}$.

$$
\begin{equation*}
\overrightarrow{A T}= \tag{2}
\end{equation*}
$$

(c) Show that $A T M$ is a straight line.
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

