

Cambridge O Level

CHEMISTRY 5070/12

Paper 1 Multiple Choice May/June 2023

1 hour

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 A sample of iodine is at room temperature and pressure.

Which statement about the particles in the sample is correct?

- **A** The particles are arranged in a giant lattice.
- **B** The particles have zero kinetic energy.
- **C** The particles move randomly through the solid.
- **D** The particles vibrate about a fixed point.
- **2** Element Z, nucleon number 31, forms an ion Z^{3-} .

Where is Z found in the Periodic Table?

- A Group III
- **B** Group V
- C Period 4
- **D** Period 5
- 3 Naturally occurring bromine has a relative atomic mass of 80 and consists entirely of two isotopes of relative atomic masses 79 and 81.

What can be deduced about naturally occurring bromine from this information only?

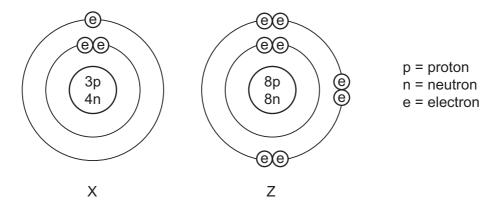
- **A** Bromine contains the two isotopes in equal proportions.
- **B** Bromine has different oxidation states.
- **C** Bromine isotopes have different numbers of protons.
- **D** Bromine is radioactive.
- 4 Element X and element Y react together to form a compound.

The electronic configurations of X and Y are X = 2.8.3 and Y = 2.6.

Which row shows the electron transfer that takes place and the type of compound formed?

	element X	element Y	type of compound
Α	2 atoms each lose 3 electrons	3 atoms each receive 2 electrons	covalent
В	2 atoms each lose 3 electrons	3 atoms each receive 2 electrons	ionic
С	2 atoms each receive 3 electrons	3 atoms each lose 2 electrons	covalent
D	2 atoms each receive 3 electrons	3 atoms each receive 2 electrons	ionic

	3
5	Which molecule has the largest number of electrons involved in covalent bonds?
	A C_2H_4 B CO_2 C CH_3OH D N_2
6	X is the arrangement of bonds around a carbon atom in graphite.
	Y is the arrangement of bonds around a carbon atom in diamond.
	Z is the arrangement of bonds around a silicon atom in silicon(IV) oxide, SiO_2 .
	Which arrangements of bonds are the same?
	A X and Y only B X and Z only C Y and Z only D X, Y and Z
7	What is the equation for the reaction between sodium carbonate and dilute nitric acid?
	A NaCO ₃ + H ₂ NO ₃ \rightarrow NaNO ₃ + H ₂ O + CO ₂
	$\textbf{B} \text{NaCO}_3 \ + \ 2\text{HNO}_3 \ \rightarrow \ \text{NaNO}_3 \ + \ \text{H}_2\text{O} \ + \ \text{CO}_2$
	$\textbf{C} \text{Na}_2\text{CO}_3 \ + \ \text{H}_2\text{NO}_3 \ \rightarrow \ \text{Na}_2\text{NO}_3 \ + \ \text{H}_2\text{O} \ + \ \text{CO}_2$
	$\mathbf{D} Na_2CO_3 \; + \; 2HNO_3 \; \rightarrow \; 2NaNO_3 \; + \; H_2O \; + \; CO_2$
8	Which statements about relative atomic mass and relative molecular mass are correct?
	1 The mass of the different isotopes does not affect relative atomic masses.
	2 Only covalent compounds have a relative molecular mass.
	3 Relative atomic masses are compared to $\frac{1}{12}$ of the mass of one atom of 12 C.
	A 1 and 2 only B 1 and 3 only C 2 and 3 only D 1, 2 and 3
9	Aqueous hydrogen peroxide, H ₂ O ₂ , decomposes slowly at 25 °C.
	$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$
	The decomposition reaction takes place faster when a catalyst is added.
	A student adds a small amount of catalyst to 10cm^3 of 1.0mol/dm^3 H ₂ O ₂ (aq) and collects the ga formed. The volume of gas collected is 90cm^3 .


A 28.1% **B** 37.5% **C** 56.3% **D** 75.0%

All measurements are at room temperature and pressure.

What is the percentage yield of $O_2(g)$?

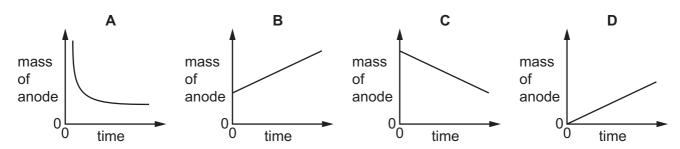
10 The diagram shows the structures of the atoms of two elements, X and Z.

X and Z are **not** the atomic symbols for these elements.

The elements combine to form a compound.

What is the mass of one mole of this compound?

- **A** 11 g
- **B** 12g
- **C** 23 g
- **D** 30 g


11 Which compound contains 45.2% nitrogen by mass?

[A_r: C, 12; H, 1; N, 14]

- **A** ethane-1,2-diamine, NH₂C₂H₄NH₂
- **B** hydroxylamine, NH₂OH
- **C** methanamide, HCONH₂
- **D** methylamine, CH₃NH₂

12 Aqueous copper(Π) sulfate is electrolysed using copper electrodes. The current is constant and the anode is weighed at regular time intervals.

Which graph is obtained when the mass of the anode is plotted against time?

- 13 What is a chemical product of a hydrogen—oxygen fuel cell?
 - A electricity
 - **B** hydrogen
 - C oxygen
 - **D** water
- **14** Hydrogen can be produced by reacting methane with steam.

$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$$

Using the bond energies in the table, what is the enthalpy change of reaction, ΔH ?

bond	bond energy in kJ/mol
C–H	435
O–H	463
H–H	436
C=O	805

- **A** -620 kJ/mol
- **B** -238 kJ/mol
- C +238 kJ/mol
- **D** +620 kJ/mol
- 15 What is the best way of slowing down the reaction between magnesium and sulfuric acid?
 - A adding a catalyst to the reactants
 - **B** diluting the acid used in the reaction
 - **C** stirring the reagents
 - **D** using magnesium powder instead of a strip of magnesium

16 The volume of gas produced by the reaction of 100 cm³ of hydrochloric acid with an excess of calcium carbonate is measured in two experiments.

The volumes of gas are measured at r.t.p. and the results are shown.

time/s	0	30	60	90	120	150	180	300
volume of gas in experiment 1/cm ³	0	20	30	38	44	48	50	50
volume of gas in experiment 2/cm ³	0	30	42	55	65	70	75	75

Which one change in conditions to experiment 1 gives the results for experiment 2?

Assume all other conditions are unchanged.

- **A** A greater volume of acid is added.
- **B** A higher concentration of acid is used.
- **C** Smaller pieces of calcium carbonate are used.
- **D** The temperature of the acid is higher.
- 17 Hydrogen is made industrially by the reaction shown.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$
 $\Delta H = -41 \text{ kJ/mol}$

Statements about this industrial process are given.

- 1 A high pressure can be used to increase the rate of formation of hydrogen.
- 2 A high pressure can be used to shift the equilibrium to the right.
- 3 A high temperature can be used to increase the rate of formation of hydrogen.
- 4 A high temperature can be used to shift the equilibrium to the right.

Which statements are correct?

A 1, 2 and 3 **B** 1 and 3 only **C** 1 only **D** 2 and 4

18 The table refers to two important industrial gaseous reactions.

reaction	reactants	product	catalyst
1	hydrogen + nitrogen	ammonia	nickel
2	oxygen + sulfur dioxide	sulfur trioxide	vanadium(V) oxide

Which catalysts are correctly stated?

	reaction 1	reaction 2
Α	no	no
В	no	yes
С	yes	no
D	yes	yes

19 Iron(II) ions react with chlorine.

$$2Fe^{2+}(aq) + Cl_2(g) \rightarrow 2Fe^{3+}(aq) + 2Cl^{-}(aq)$$

Which statement about this reaction is correct?

- **A** Chlorine is reduced by iron(II) ions.
- **B** Chlorine is the reducing agent.
- **C** Iron(II) ions are reduced by chlorine.
- **D** Iron(II) ions are the oxidising agent.
- 20 Which reagent and observation describes the test for a reducing agent?

	reagent	colour change
Α	acidified aqueous potassium manganate(VII)	colourless to purple
В	acidified aqueous potassium manganate(VII)	purple to colourless
С	aqueous potassium iodide	colourless to purple
D	aqueous potassium iodide	purple to colourless

21 Compound X is a gas at room temperature. X dissolves in water to give a solution with a pH of 4.

Which statement about compound X is correct?

- **A** An aqueous solution of X will **not** conduct electricity.
- **B** Atoms of a metallic element are present in X.
- **C** Atoms of hydrogen are present in X.
- **D** X is ionically bonded.
- 22 Which statement about hydrochloric acid is correct?
 - A Hydrochloric acid reacts with magnesium carbonate to form three different products.
 - **B** Hydrochloric acid reacts with magnesium to form magnesium chloride and water.
 - **C** When hydrochloric acid is added to a colourless solution of thymolphthalein, it turns blue.
 - **D** When hydrochloric acid is warmed with ammonium chloride, ammonia is formed.
- 23 The addition of calcium hydroxide to soil reduces its acidity but also reduces the efficiency of fertilisers.

Which two equations explain this?

- 1 $Ca(OH)_2(s) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$
- 2 $Ca(OH)_2(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + 2H_2O(I)$
- 3 $Ca(OH)_2(s) + 2NH_4NO_3(aq) \rightarrow Ca(NO_3)_2(aq) + 2NH_3(g) + 2H_2O(l)$
- 4 $Ca(OH)_2(s) + Cu^{2+}(aq) \rightarrow Cu(OH)_2(s) + Ca^{2+}(aq)$
- **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4
- **24** Which anions are contained in salts that are always soluble in water?
 - A carbonates
 - **B** chlorides
 - **C** nitrates
 - **D** sulfates

25 The element phosphorus, P, is immediately below nitrogen in the Periodic Table.

It forms an oxide with the empirical formula P₂O₅.

From the position of phosphorus in the Periodic Table, the element is expected to be1...... and the bonds in its oxide to be2.......

Which words correctly complete gaps 1 and 2?

	1	2
Α	a metal	covalent
В	a metal	ionic
С	a non-metal	covalent
D	a non-metal	ionic

26 Which statement is correct?

- A Group I elements are less reactive than the Group II element in the same period because they only need to lose one electron to have complete shells.
- **B** Group I elements are stored under oil to avoid reaction with oxygen and water in the air.
- **C** Group I elements become more reactive as the group is descended because the number of outer shell electrons increases.
- **D** The melting point of Group I elements decreases as the group is descended because there is more attraction between positive ions and the 'sea' of delocalised electrons.
- **27** The table shows some properties of transition elements and the reasons why they have these properties.

Which row shows a correct property and the reason why transition elements show this property?

	property	reason
Α	iron has two common oxidation states (I) and (II)	iron atoms can lose one or two electrons to form compounds
В	nickel can be used as a catalyst	the use of nickel raises the activation energy of the reaction
С	the reaction of aqueous sodium hydroxide with the salt of a transition element can be used to identify the element	transition metal hydroxides are often coloured
D	transition elements have high melting points	the presence of varying numbers of electrons in the 'sea' of delocalised electrons weakens the metallic lattice

28 Which equation is correct?

$$A \quad Cu(s) \ + \ O_2(g) \ \rightarrow \ 2CuO(s)$$

$$\textbf{B} \quad \text{Mg(s)} \ + \ \text{H}_2 \text{SO}_4(\text{aq}) \ \rightarrow \ \text{MgSO}_4(\text{aq}) \ + \ \text{H}_2(\text{g})$$

C Na(s) +
$$H_2O(I) \rightarrow NaO(aq) + H_2(q)$$

D
$$2Zn(s) + 2HNO_3(aq) \rightarrow 2ZnNO_3(aq) + H_2(q)$$

29 Metal X reacts with cold water to form a gas.

Zinc displaces metal Y from solutions of its salts.

The carbonate of metal Z is insoluble.

What could be the identities of X, Y and Z?

	Х	Y	Z
Α	sodium	magnesium	sodium
В	sodium	copper	copper
С	copper	magnesium	copper
D	sodium	copper	sodium

30 Which statement about alloys is correct?

- **A** They are compounds of two or more metals.
- **B** They are mixtures of metals with other metals or non-metals.
- **C** They conduct electricity because they have ionic bonds between the metal atoms.
- **D** They have identical physical properties to the metals they contain.

31 Pieces of magnesium can be attached to the steel hull of a ship to prevent rusting.

This is sacrificial protection.

Which statements about sacrificial protection are correct?

- 1 Iron atoms gain electrons and form hydrated iron(III) oxide.
- 2 Magnesium atoms gain electrons to form magnesium ions.
- 3 Magnesium is oxidised.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 3 only

32	Why is	s carbon	used in	water	purification?
----	--------	----------	---------	-------	---------------

- A It acts as a filter to remove insoluble solids.
- **B** It adds oxygen to the water.
- C It disinfects the water.
- **D** It removes tastes and odours.

33 Which statement about air pollutants is correct?

- A Catalytic converters in vehicles change a toxic gas into a non-toxic gas.
- **B** Flue gas desulfurisation uses calcium nitrate.
- **C** Photosynthesis is a process that releases carbon dioxide.
- **D** Sulfur dioxide is responsible for photochemical smog.

34 What is the structural formula of propyl methanoate?

- A CH₃COOCH₂CH₂CH₃
- B CH₃COOCCH₂CH₃
- C CH₃CH₂COOCH₃
- D CH₃CH₂CH₂OOCH

35 Which statement about ethane is correct?

- **A** Each ethane molecule contains exactly seven bonds, all of which are single covalent bonds.
- **B** Ethane is a member of the homologous series of alkanes, a family of unsaturated hydrocarbons.
- **C** The equation for the complete combustion of ethane is $C_2H_6 + 3O_2 \rightarrow 2CO_2 + 3H_2O$.
- **D** When a molecule of ethane reacts with chlorine, one hydrogen atom is replaced by a chlorine molecule.

36 Isoprene is an alkene which is commonly found in plants.

Which properties does isoprene have?

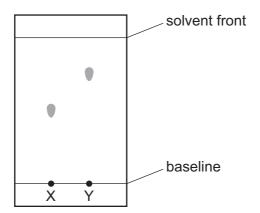
- 1 It burns in air.
- 2 It can form polymers.
- 3 It decolourises aqueous bromine.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

37 The structure of an ester is shown.

Which two compounds react to form this ester?

- A butan-1-ol and methanoic acid
- B ethanol and propanoic acid
- C propan-1-ol and ethanoic acid
- **D** propan-1-ol and methanoic acid
- 38 25.0 cm³ of 1.0 mol/dm³ sodium hydroxide is titrated with dilute sulfuric acid, using a suitable indicator.

25.0 cm³ of the sulfuric acid is required to reach the end-point.

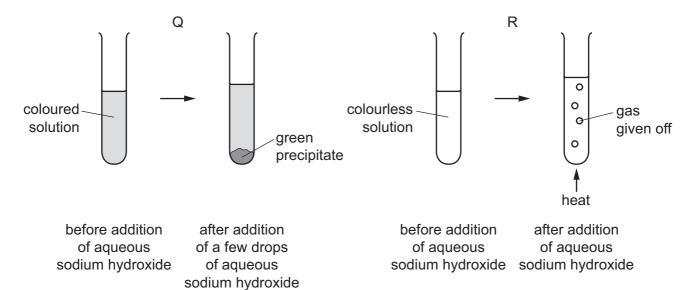

What is the concentration of the sulfuric acid and which indicator is used?

	concentration of sulfuric acid in mol/dm ³	indicator
Α	0.5	methyl orange
В	0.5	universal indicator
С	2.0	methyl orange
D	2.0	universal indicator

39 The results of a paper chromatography experiment are shown.

X is an aqueous solution of a salt of a Group I element.

Y is an aqueous solution of a salt of a transition element.



Which row is correct?

	larger R _f value	requires a locating agent
Α	Х	Х
В	×	Y
С	Y	X
D	Y	Y

40 Aqueous sodium hydroxide is used to identify the ions present in aqueous solutions of compounds Q and R.

The results are shown.

Which row is correct?

	ion in compound Q	ion in compound R
Α	Cr ³⁺	NH ₄ ⁺
В	Cu ²⁺	CO ₃ ²⁻
С	Fe ²⁺	CO ₃ ²⁻
D	Fe ³⁺	NH ₄ ⁺

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	₹	² H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	첫	krypton 84	54	×	xenon 131	98	R	radon	118	Og	oganesson -
	\equiv			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -	117	<u>S</u>	tennessine -
	>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Тe	tellurium 128	84	Ъо	polonium –	116	_	livermorium —
	>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium -
	≥			9	O	carbon 12	41	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium -
	≡			2	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	п	indium 115	81	<i>1</i> 1	thallium 204	113	R	nihonium —
										30	Zn	zinc 65	48	පි	cadmium 112	80	Р	mercury 201	112	ű	copernicium —
										29	Co	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group										28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Q				1						27	ပိ	cobalt 59	45	格	rhodium 103	77	ľ	iridium 192	109	Μţ	meitnerium -
		- I	hydrogen 1											Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
							1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
				_	pol	ass						chromium 52		Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	g	niobium 93	73	<u>Б</u>	tantalum 181	105	Op	dubnium -
					atc	re				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium —
										21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium
	_			8	=	lithium 7	7	Na	sodium 23	19	×	potassium 39	37	S S	rubidium 85	55	S	caesium 133	87	ቷ	francium -

r ₁ Lu	lutetium 175	103	۲	lawrencium	I
o Y	ytterbium 173	102	8 N	nobelium	I
69 Tm	thulium 169	101	Md	mendelevium	I
8 Ш	erbium 167	100	Fm	ferminm	I
67 Ho	holmium 165	66	Es	einsteinium	I
® ^	dysprosium 163	86	ŭ	califomium	I
65 Tb	terbium 159	97	Ř	berkelium	I
64 Gd	gadolinium 157	96	Cm	curium	I
63 Eu	europium 152	92	Am	americium	1
62 Sm	samarium 150	94	Pn	plutonium	ı
61 Pm	promethium -	93	δ	neptunium	1
99 N	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Ce S8	cerium 140	06	Ч	thorium	232
57 La	lanthanum 139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).